Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-3i\right)\left(4+7i\right)}{\left(4-7i\right)\left(4+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+7i.
\frac{\left(2-3i\right)\left(4+7i\right)}{4^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-3i\right)\left(4+7i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7i^{2}}{65}
Multiply complex numbers 2-3i and 4+7i like you multiply binomials.
\frac{2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7\left(-1\right)}{65}
By definition, i^{2} is -1.
\frac{8+14i-12i+21}{65}
Do the multiplications in 2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7\left(-1\right).
\frac{8+21+\left(14-12\right)i}{65}
Combine the real and imaginary parts in 8+14i-12i+21.
\frac{29+2i}{65}
Do the additions in 8+21+\left(14-12\right)i.
\frac{29}{65}+\frac{2}{65}i
Divide 29+2i by 65 to get \frac{29}{65}+\frac{2}{65}i.
Re(\frac{\left(2-3i\right)\left(4+7i\right)}{\left(4-7i\right)\left(4+7i\right)})
Multiply both numerator and denominator of \frac{2-3i}{4-7i} by the complex conjugate of the denominator, 4+7i.
Re(\frac{\left(2-3i\right)\left(4+7i\right)}{4^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-3i\right)\left(4+7i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7i^{2}}{65})
Multiply complex numbers 2-3i and 4+7i like you multiply binomials.
Re(\frac{2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7\left(-1\right)}{65})
By definition, i^{2} is -1.
Re(\frac{8+14i-12i+21}{65})
Do the multiplications in 2\times 4+2\times \left(7i\right)-3i\times 4-3\times 7\left(-1\right).
Re(\frac{8+21+\left(14-12\right)i}{65})
Combine the real and imaginary parts in 8+14i-12i+21.
Re(\frac{29+2i}{65})
Do the additions in 8+21+\left(14-12\right)i.
Re(\frac{29}{65}+\frac{2}{65}i)
Divide 29+2i by 65 to get \frac{29}{65}+\frac{2}{65}i.
\frac{29}{65}
The real part of \frac{29}{65}+\frac{2}{65}i is \frac{29}{65}.