Evaluate
-\frac{294}{41}-\frac{22}{41}i\approx -7.170731707-0.536585366i
Real Part
-\frac{294}{41} = -7\frac{7}{41} = -7.170731707317073
Share
Copied to clipboard
\frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}-2+5i^{2}
Multiply both numerator and denominator of \frac{2-3i}{4+5i} by the complex conjugate of the denominator, 4-5i.
\frac{-7-22i}{41}-2+5i^{2}
Do the multiplications in \frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}.
-\frac{7}{41}-\frac{22}{41}i-2+5i^{2}
Divide -7-22i by 41 to get -\frac{7}{41}-\frac{22}{41}i.
5i^{2}-\frac{89}{41}-\frac{22}{41}i
Do the additions.
5\left(-1\right)-\frac{89}{41}-\frac{22}{41}i
Calculate i to the power of 2 and get -1.
-5-\frac{89}{41}-\frac{22}{41}i
Multiply 5 and -1 to get -5.
-\frac{294}{41}-\frac{22}{41}i
Do the additions.
Re(\frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}-2+5i^{2})
Multiply both numerator and denominator of \frac{2-3i}{4+5i} by the complex conjugate of the denominator, 4-5i.
Re(\frac{-7-22i}{41}-2+5i^{2})
Do the multiplications in \frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}.
Re(-\frac{7}{41}-\frac{22}{41}i-2+5i^{2})
Divide -7-22i by 41 to get -\frac{7}{41}-\frac{22}{41}i.
Re(5i^{2}-\frac{89}{41}-\frac{22}{41}i)
Do the additions in -\frac{7}{41}-\frac{22}{41}i-2.
Re(5\left(-1\right)-\frac{89}{41}-\frac{22}{41}i)
Calculate i to the power of 2 and get -1.
Re(-5-\frac{89}{41}-\frac{22}{41}i)
Multiply 5 and -1 to get -5.
Re(-\frac{294}{41}-\frac{22}{41}i)
Do the additions in -5-\frac{89}{41}-\frac{22}{41}i.
-\frac{294}{41}
The real part of -\frac{294}{41}-\frac{22}{41}i is -\frac{294}{41}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}