Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}-2+5i^{2}
Multiply both numerator and denominator of \frac{2-3i}{4+5i} by the complex conjugate of the denominator, 4-5i.
\frac{-7-22i}{41}-2+5i^{2}
Do the multiplications in \frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}.
-\frac{7}{41}-\frac{22}{41}i-2+5i^{2}
Divide -7-22i by 41 to get -\frac{7}{41}-\frac{22}{41}i.
5i^{2}-\frac{89}{41}-\frac{22}{41}i
Do the additions.
5\left(-1\right)-\frac{89}{41}-\frac{22}{41}i
Calculate i to the power of 2 and get -1.
-5-\frac{89}{41}-\frac{22}{41}i
Multiply 5 and -1 to get -5.
-\frac{294}{41}-\frac{22}{41}i
Do the additions.
Re(\frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}-2+5i^{2})
Multiply both numerator and denominator of \frac{2-3i}{4+5i} by the complex conjugate of the denominator, 4-5i.
Re(\frac{-7-22i}{41}-2+5i^{2})
Do the multiplications in \frac{\left(2-3i\right)\left(4-5i\right)}{\left(4+5i\right)\left(4-5i\right)}.
Re(-\frac{7}{41}-\frac{22}{41}i-2+5i^{2})
Divide -7-22i by 41 to get -\frac{7}{41}-\frac{22}{41}i.
Re(5i^{2}-\frac{89}{41}-\frac{22}{41}i)
Do the additions in -\frac{7}{41}-\frac{22}{41}i-2.
Re(5\left(-1\right)-\frac{89}{41}-\frac{22}{41}i)
Calculate i to the power of 2 and get -1.
Re(-5-\frac{89}{41}-\frac{22}{41}i)
Multiply 5 and -1 to get -5.
Re(-\frac{294}{41}-\frac{22}{41}i)
Do the additions in -5-\frac{89}{41}-\frac{22}{41}i.
-\frac{294}{41}
The real part of -\frac{294}{41}-\frac{22}{41}i is -\frac{294}{41}.