Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{\left(2+3\sqrt{5}\right)\left(2-3\sqrt{5}\right)}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2-\sqrt{5}}{2+3\sqrt{5}} by multiplying numerator and denominator by 2-3\sqrt{5}.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{2^{2}-\left(3\sqrt{5}\right)^{2}}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(2+3\sqrt{5}\right)\left(2-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{4-\left(3\sqrt{5}\right)^{2}}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{4-3^{2}\left(\sqrt{5}\right)^{2}}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{4-9\left(\sqrt{5}\right)^{2}}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{4-9\times 5}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{4-45}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{2^{2}-\left(3\sqrt{5}\right)^{2}}
Subtract 45 from 4 to get -41.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{4-\left(3\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{4-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{4-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{4-9\times 5}
The square of \sqrt{5} is 5.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{4-45}
Multiply 9 and 5 to get 45.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{2-3\sqrt{5}}{-41}
Subtract 45 from 4 to get -41.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41}\times \frac{-2+3\sqrt{5}}{41}
Multiply both numerator and denominator by -1.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)\left(-2+3\sqrt{5}\right)}{-41\times 41}
Multiply \frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)}{-41} times \frac{-2+3\sqrt{5}}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2-\sqrt{5}\right)\left(2-3\sqrt{5}\right)\left(-2+3\sqrt{5}\right)}{-1681}
Multiply -41 and 41 to get -1681.
\frac{\left(4-8\sqrt{5}+3\left(\sqrt{5}\right)^{2}\right)\left(-2+3\sqrt{5}\right)}{-1681}
Use the distributive property to multiply 2-\sqrt{5} by 2-3\sqrt{5} and combine like terms.
\frac{\left(4-8\sqrt{5}+3\times 5\right)\left(-2+3\sqrt{5}\right)}{-1681}
The square of \sqrt{5} is 5.
\frac{\left(4-8\sqrt{5}+15\right)\left(-2+3\sqrt{5}\right)}{-1681}
Multiply 3 and 5 to get 15.
\frac{\left(19-8\sqrt{5}\right)\left(-2+3\sqrt{5}\right)}{-1681}
Add 4 and 15 to get 19.
\frac{-38+73\sqrt{5}-24\left(\sqrt{5}\right)^{2}}{-1681}
Use the distributive property to multiply 19-8\sqrt{5} by -2+3\sqrt{5} and combine like terms.
\frac{-38+73\sqrt{5}-24\times 5}{-1681}
The square of \sqrt{5} is 5.
\frac{-38+73\sqrt{5}-120}{-1681}
Multiply -24 and 5 to get -120.
\frac{-158+73\sqrt{5}}{-1681}
Subtract 120 from -38 to get -158.
\frac{158-73\sqrt{5}}{1681}
Multiply both numerator and denominator by -1.