Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-2i}{1-i}
Add 1 and 1 to get 2.
\frac{\left(2-2i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{\left(2-2i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2i-2i-2i^{2}}{2}
Multiply complex numbers 2-2i and 1+i like you multiply binomials.
\frac{2\times 1+2i-2i-2\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{2+2i-2i+2}{2}
Do the multiplications in 2\times 1+2i-2i-2\left(-1\right).
\frac{2+2+\left(2-2\right)i}{2}
Combine the real and imaginary parts in 2+2i-2i+2.
\frac{4}{2}
Do the additions in 2+2+\left(2-2\right)i.
2
Divide 4 by 2 to get 2.
Re(\frac{2-2i}{1-i})
Add 1 and 1 to get 2.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{2-2i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-2i\right)\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2i-2i-2i^{2}}{2})
Multiply complex numbers 2-2i and 1+i like you multiply binomials.
Re(\frac{2\times 1+2i-2i-2\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{2+2i-2i+2}{2})
Do the multiplications in 2\times 1+2i-2i-2\left(-1\right).
Re(\frac{2+2+\left(2-2\right)i}{2})
Combine the real and imaginary parts in 2+2i-2i+2.
Re(\frac{4}{2})
Do the additions in 2+2+\left(2-2\right)i.
Re(2)
Divide 4 by 2 to get 2.
2
The real part of 2 is 2.