Evaluate
-\frac{\sqrt{6}}{2}+1\approx -0.224744871
Factor
\frac{2 - \sqrt{6}}{2} = -0.22474487139158894
Share
Copied to clipboard
\frac{2\left(-2-\sqrt{6}\right)+4}{4+4\sqrt{6}+\left(\sqrt{6}\right)^{2}+2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-\sqrt{6}\right)^{2}.
\frac{2\left(-2-\sqrt{6}\right)+4}{4+4\sqrt{6}+6+2}
The square of \sqrt{6} is 6.
\frac{2\left(-2-\sqrt{6}\right)+4}{10+4\sqrt{6}+2}
Add 4 and 6 to get 10.
\frac{2\left(-2-\sqrt{6}\right)+4}{12+4\sqrt{6}}
Add 10 and 2 to get 12.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{\left(12+4\sqrt{6}\right)\left(12-4\sqrt{6}\right)}
Rationalize the denominator of \frac{2\left(-2-\sqrt{6}\right)+4}{12+4\sqrt{6}} by multiplying numerator and denominator by 12-4\sqrt{6}.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{12^{2}-\left(4\sqrt{6}\right)^{2}}
Consider \left(12+4\sqrt{6}\right)\left(12-4\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{144-\left(4\sqrt{6}\right)^{2}}
Calculate 12 to the power of 2 and get 144.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{144-4^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(4\sqrt{6}\right)^{2}.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{144-16\left(\sqrt{6}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{144-16\times 6}
The square of \sqrt{6} is 6.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{144-96}
Multiply 16 and 6 to get 96.
\frac{\left(2\left(-2-\sqrt{6}\right)+4\right)\left(12-4\sqrt{6}\right)}{48}
Subtract 96 from 144 to get 48.
\frac{\left(-4-2\sqrt{6}+4\right)\left(12-4\sqrt{6}\right)}{48}
Use the distributive property to multiply 2 by -2-\sqrt{6}.
\frac{-2\sqrt{6}\left(12-4\sqrt{6}\right)}{48}
Add -4 and 4 to get 0.
\frac{-24\sqrt{6}+8\left(\sqrt{6}\right)^{2}}{48}
Use the distributive property to multiply -2\sqrt{6} by 12-4\sqrt{6}.
\frac{-24\sqrt{6}+8\times 6}{48}
The square of \sqrt{6} is 6.
\frac{-24\sqrt{6}+48}{48}
Multiply 8 and 6 to get 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}