Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+3i\right)\left(5+4i\right)}{\left(5-4i\right)\left(5+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+4i.
\frac{\left(2+3i\right)\left(5+4i\right)}{5^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+3i\right)\left(5+4i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4i^{2}}{41}
Multiply complex numbers 2+3i and 5+4i like you multiply binomials.
\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{10+8i+15i-12}{41}
Do the multiplications in 2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right).
\frac{10-12+\left(8+15\right)i}{41}
Combine the real and imaginary parts in 10+8i+15i-12.
\frac{-2+23i}{41}
Do the additions in 10-12+\left(8+15\right)i.
-\frac{2}{41}+\frac{23}{41}i
Divide -2+23i by 41 to get -\frac{2}{41}+\frac{23}{41}i.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{\left(5-4i\right)\left(5+4i\right)})
Multiply both numerator and denominator of \frac{2+3i}{5-4i} by the complex conjugate of the denominator, 5+4i.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{5^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2+3i\right)\left(5+4i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4i^{2}}{41})
Multiply complex numbers 2+3i and 5+4i like you multiply binomials.
Re(\frac{2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{10+8i+15i-12}{41})
Do the multiplications in 2\times 5+2\times \left(4i\right)+3i\times 5+3\times 4\left(-1\right).
Re(\frac{10-12+\left(8+15\right)i}{41})
Combine the real and imaginary parts in 10+8i+15i-12.
Re(\frac{-2+23i}{41})
Do the additions in 10-12+\left(8+15\right)i.
Re(-\frac{2}{41}+\frac{23}{41}i)
Divide -2+23i by 41 to get -\frac{2}{41}+\frac{23}{41}i.
-\frac{2}{41}
The real part of -\frac{2}{41}+\frac{23}{41}i is -\frac{2}{41}.