Solve for b
b=\frac{\left(a+18\right)^{2}}{5}
a\leq -18
Solve for a
a=-\left(\sqrt{5b}+18\right)
b\geq 0
Share
Copied to clipboard
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Rationalize the denominator of \frac{2+\sqrt{5}}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Square 2. Square \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Subtract 5 from 4 to get -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Multiply 2+\sqrt{5} and 2+\sqrt{5} to get \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
The square of \sqrt{5} is 5.
\frac{9+4\sqrt{5}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Add 4 and 5 to get 9.
-9-4\sqrt{5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Anything divided by -1 gives its opposite. To find the opposite of 9+4\sqrt{5}, find the opposite of each term.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}=a+\sqrt{5b}
Rationalize the denominator of \frac{2-\sqrt{5}}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5b}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}=a+\sqrt{5b}
Square 2. Square \sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}=a+\sqrt{5b}
Subtract 5 from 4 to get -1.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Multiply 2-\sqrt{5} and 2-\sqrt{5} to get \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+5}{-1}=a+\sqrt{5b}
The square of \sqrt{5} is 5.
-9-4\sqrt{5}+\frac{9-4\sqrt{5}}{-1}=a+\sqrt{5b}
Add 4 and 5 to get 9.
-9-4\sqrt{5}-9+4\sqrt{5}=a+\sqrt{5b}
Anything divided by -1 gives its opposite. To find the opposite of 9-4\sqrt{5}, find the opposite of each term.
-18-4\sqrt{5}+4\sqrt{5}=a+\sqrt{5b}
Subtract 9 from -9 to get -18.
-18=a+\sqrt{5b}
Combine -4\sqrt{5} and 4\sqrt{5} to get 0.
a+\sqrt{5b}=-18
Swap sides so that all variable terms are on the left hand side.
\sqrt{5b}=-18-a
Subtract a from both sides.
5b=\left(a+18\right)^{2}
Square both sides of the equation.
\frac{5b}{5}=\frac{\left(a+18\right)^{2}}{5}
Divide both sides by 5.
b=\frac{\left(a+18\right)^{2}}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}