Evaluate
\frac{\sqrt{3}+5i}{4}\approx 0.433012702+1.25i
Real Part
\frac{\sqrt{3}}{4} = 0.4330127018922193
Share
Copied to clipboard
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{\left(\sqrt{3}-i\right)\left(\sqrt{3}+i\right)}
Rationalize the denominator of \frac{2+i\sqrt{3}}{\sqrt{3}-i} by multiplying numerator and denominator by \sqrt{3}+i.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\right)^{2}}
Consider \left(\sqrt{3}-i\right)\left(\sqrt{3}+i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{3+1}
Square \sqrt{3}. Square -i.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{4}
Subtract -1 from 3 to get 4.
\frac{2\sqrt{3}+2i+i\left(\sqrt{3}\right)^{2}-\sqrt{3}}{4}
Apply the distributive property by multiplying each term of 2+i\sqrt{3} by each term of \sqrt{3}+i.
\frac{2\sqrt{3}+2i+3i-\sqrt{3}}{4}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}+5i-\sqrt{3}}{4}
Add 2i and 3i to get 5i.
\frac{\sqrt{3}+5i}{4}
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}