Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{\left(\sqrt{3}-i\right)\left(\sqrt{3}+i\right)}
Rationalize the denominator of \frac{2+i\sqrt{3}}{\sqrt{3}-i} by multiplying numerator and denominator by \sqrt{3}+i.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{\left(\sqrt{3}\right)^{2}-\left(-i\right)^{2}}
Consider \left(\sqrt{3}-i\right)\left(\sqrt{3}+i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{3+1}
Square \sqrt{3}. Square -i.
\frac{\left(2+i\sqrt{3}\right)\left(\sqrt{3}+i\right)}{4}
Subtract -1 from 3 to get 4.
\frac{2\sqrt{3}+2i+i\left(\sqrt{3}\right)^{2}-\sqrt{3}}{4}
Apply the distributive property by multiplying each term of 2+i\sqrt{3} by each term of \sqrt{3}+i.
\frac{2\sqrt{3}+2i+3i-\sqrt{3}}{4}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}+5i-\sqrt{3}}{4}
Add 2i and 3i to get 5i.
\frac{\sqrt{3}+5i}{4}
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.