Evaluate
\frac{2}{a+2b}
Differentiate w.r.t. b
-\frac{4}{\left(a+2b\right)^{2}}
Share
Copied to clipboard
\frac{2\times \frac{1}{a}\times \frac{1}{b}}{\left(2\times \frac{1}{a}b+1\right)\times \frac{1}{b}}
Factor the expressions that are not already factored.
\frac{2\times \frac{1}{a}}{2\times \frac{1}{a}b+1}
Cancel out \frac{1}{b} in both numerator and denominator.
\frac{\frac{2}{a}}{2\times \frac{1}{a}b+1}
Express 2\times \frac{1}{a} as a single fraction.
\frac{\frac{2}{a}}{\frac{2}{a}b+1}
Express 2\times \frac{1}{a} as a single fraction.
\frac{\frac{2}{a}}{\frac{2b}{a}+1}
Express \frac{2}{a}b as a single fraction.
\frac{\frac{2}{a}}{\frac{2b}{a}+\frac{a}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\frac{2}{a}}{\frac{2b+a}{a}}
Since \frac{2b}{a} and \frac{a}{a} have the same denominator, add them by adding their numerators.
\frac{2a}{a\left(2b+a\right)}
Divide \frac{2}{a} by \frac{2b+a}{a} by multiplying \frac{2}{a} by the reciprocal of \frac{2b+a}{a}.
\frac{2}{a+2b}
Cancel out a in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}