Solve for x
x = \frac{\sqrt{318115123326889}}{13300000} \approx 1.341036249
x = -\frac{\sqrt{318115123326889}}{13300000} \approx -1.341036249
Graph
Share
Copied to clipboard
\frac{2\times \frac{1}{10000000}\times 1.98}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{\frac{1}{5000000}\times 1.98}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
\frac{\frac{99}{250000000}}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply \frac{1}{5000000} and 1.98 to get \frac{99}{250000000}.
\frac{\frac{99}{250000000}}{x-1.51\times \frac{1}{1000}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{99}{250000000}}{x-\frac{151}{100000}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 1.51 and \frac{1}{1000} to get \frac{151}{100000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Express \frac{\frac{99}{250000000}}{x-\frac{151}{100000}} as a single fraction.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{2\times \frac{1}{10000000}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{1}{5000000}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply \frac{1}{5000000} and 1.98 to get \frac{99}{250000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+1.51\times \frac{1}{1000}}=6.65\times 10^{-10}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+\frac{151}{100000}}=6.65\times 10^{-10}
Multiply 1.51 and \frac{1}{1000} to get \frac{151}{100000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=6.65\times 10^{-10}
Express \frac{\frac{99}{250000000}}{x+\frac{151}{100000}} as a single fraction.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=6.65\times \frac{1}{10000000000}
Calculate 10 to the power of -10 and get \frac{1}{10000000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=\frac{133}{200000000000}
Multiply 6.65 and \frac{1}{10000000000} to get \frac{133}{200000000000}.
\frac{99}{250000000x-377500}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=\frac{133}{200000000000}
Use the distributive property to multiply 250000000 by x-\frac{151}{100000}.
\frac{99}{250000000x-377500}-\frac{99}{250000000x+377500}=\frac{133}{200000000000}
Use the distributive property to multiply 250000000 by x+\frac{151}{100000}.
\frac{99}{2500\left(100000x-151\right)}-\frac{99}{2500\left(100000x+151\right)}=\frac{133}{200000000000}
Factor 250000000x-377500. Factor 250000000x+377500.
\frac{99\left(100000x+151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}-\frac{99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2500\left(100000x-151\right) and 2500\left(100000x+151\right) is 2500\left(100000x-151\right)\left(100000x+151\right). Multiply \frac{99}{2500\left(100000x-151\right)} times \frac{100000x+151}{100000x+151}. Multiply \frac{99}{2500\left(100000x+151\right)} times \frac{100000x-151}{100000x-151}.
\frac{99\left(100000x+151\right)-99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Since \frac{99\left(100000x+151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)} and \frac{99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9900000x+14949-9900000x+14949}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Do the multiplications in 99\left(100000x+151\right)-99\left(100000x-151\right).
\frac{29898}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Combine like terms in 9900000x+14949-9900000x+14949.
80000000\times 29898=133\left(100000x-151\right)\left(100000x+151\right)
Variable x cannot be equal to any of the values -\frac{151}{100000},\frac{151}{100000} since division by zero is not defined. Multiply both sides of the equation by 200000000000\left(100000x-151\right)\left(100000x+151\right), the least common multiple of 2500\left(100000x-151\right)\left(100000x+151\right),200000000000.
2391840000000=133\left(100000x-151\right)\left(100000x+151\right)
Multiply 80000000 and 29898 to get 2391840000000.
2391840000000=\left(13300000x-20083\right)\left(100000x+151\right)
Use the distributive property to multiply 133 by 100000x-151.
2391840000000=1330000000000x^{2}-3032533
Use the distributive property to multiply 13300000x-20083 by 100000x+151 and combine like terms.
1330000000000x^{2}-3032533=2391840000000
Swap sides so that all variable terms are on the left hand side.
1330000000000x^{2}=2391840000000+3032533
Add 3032533 to both sides.
1330000000000x^{2}=2391843032533
Add 2391840000000 and 3032533 to get 2391843032533.
x^{2}=\frac{2391843032533}{1330000000000}
Divide both sides by 1330000000000.
x=\frac{\sqrt{318115123326889}}{13300000} x=-\frac{\sqrt{318115123326889}}{13300000}
Take the square root of both sides of the equation.
\frac{2\times \frac{1}{10000000}\times 1.98}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{\frac{1}{5000000}\times 1.98}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
\frac{\frac{99}{250000000}}{x-1.51\times 10^{-3}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply \frac{1}{5000000} and 1.98 to get \frac{99}{250000000}.
\frac{\frac{99}{250000000}}{x-1.51\times \frac{1}{1000}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{99}{250000000}}{x-\frac{151}{100000}}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 1.51 and \frac{1}{1000} to get \frac{151}{100000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{2\times 10^{-7}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Express \frac{\frac{99}{250000000}}{x-\frac{151}{100000}} as a single fraction.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{2\times \frac{1}{10000000}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{1}{5000000}\times 1.98}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply 2 and \frac{1}{10000000} to get \frac{1}{5000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+1.51\times 10^{-3}}=6.65\times 10^{-10}
Multiply \frac{1}{5000000} and 1.98 to get \frac{99}{250000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+1.51\times \frac{1}{1000}}=6.65\times 10^{-10}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{\frac{99}{250000000}}{x+\frac{151}{100000}}=6.65\times 10^{-10}
Multiply 1.51 and \frac{1}{1000} to get \frac{151}{100000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=6.65\times 10^{-10}
Express \frac{\frac{99}{250000000}}{x+\frac{151}{100000}} as a single fraction.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=6.65\times \frac{1}{10000000000}
Calculate 10 to the power of -10 and get \frac{1}{10000000000}.
\frac{99}{250000000\left(x-\frac{151}{100000}\right)}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=\frac{133}{200000000000}
Multiply 6.65 and \frac{1}{10000000000} to get \frac{133}{200000000000}.
\frac{99}{250000000x-377500}-\frac{99}{250000000\left(x+\frac{151}{100000}\right)}=\frac{133}{200000000000}
Use the distributive property to multiply 250000000 by x-\frac{151}{100000}.
\frac{99}{250000000x-377500}-\frac{99}{250000000x+377500}=\frac{133}{200000000000}
Use the distributive property to multiply 250000000 by x+\frac{151}{100000}.
\frac{99}{2500\left(100000x-151\right)}-\frac{99}{2500\left(100000x+151\right)}=\frac{133}{200000000000}
Factor 250000000x-377500. Factor 250000000x+377500.
\frac{99\left(100000x+151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}-\frac{99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2500\left(100000x-151\right) and 2500\left(100000x+151\right) is 2500\left(100000x-151\right)\left(100000x+151\right). Multiply \frac{99}{2500\left(100000x-151\right)} times \frac{100000x+151}{100000x+151}. Multiply \frac{99}{2500\left(100000x+151\right)} times \frac{100000x-151}{100000x-151}.
\frac{99\left(100000x+151\right)-99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Since \frac{99\left(100000x+151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)} and \frac{99\left(100000x-151\right)}{2500\left(100000x-151\right)\left(100000x+151\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9900000x+14949-9900000x+14949}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Do the multiplications in 99\left(100000x+151\right)-99\left(100000x-151\right).
\frac{29898}{2500\left(100000x-151\right)\left(100000x+151\right)}=\frac{133}{200000000000}
Combine like terms in 9900000x+14949-9900000x+14949.
\frac{29898}{2500\left(100000x-151\right)\left(100000x+151\right)}-\frac{133}{200000000000}=0
Subtract \frac{133}{200000000000} from both sides.
\frac{29898\times 80000000}{200000000000\left(100000x-151\right)\left(100000x+151\right)}-\frac{133\left(100000x-151\right)\left(100000x+151\right)}{200000000000\left(100000x-151\right)\left(100000x+151\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2500\left(100000x-151\right)\left(100000x+151\right) and 200000000000 is 200000000000\left(100000x-151\right)\left(100000x+151\right). Multiply \frac{29898}{2500\left(100000x-151\right)\left(100000x+151\right)} times \frac{80000000}{80000000}. Multiply \frac{133}{200000000000} times \frac{\left(100000x-151\right)\left(100000x+151\right)}{\left(100000x-151\right)\left(100000x+151\right)}.
\frac{29898\times 80000000-133\left(100000x-151\right)\left(100000x+151\right)}{200000000000\left(100000x-151\right)\left(100000x+151\right)}=0
Since \frac{29898\times 80000000}{200000000000\left(100000x-151\right)\left(100000x+151\right)} and \frac{133\left(100000x-151\right)\left(100000x+151\right)}{200000000000\left(100000x-151\right)\left(100000x+151\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2391840000000-1330000000000x^{2}-2008300000x+2008300000x+3032533}{200000000000\left(100000x-151\right)\left(100000x+151\right)}=0
Do the multiplications in 29898\times 80000000-133\left(100000x-151\right)\left(100000x+151\right).
\frac{2391843032533-1330000000000x^{2}}{200000000000\left(100000x-151\right)\left(100000x+151\right)}=0
Combine like terms in 2391840000000-1330000000000x^{2}-2008300000x+2008300000x+3032533.
2391843032533-1330000000000x^{2}=0
Variable x cannot be equal to any of the values -\frac{151}{100000},\frac{151}{100000} since division by zero is not defined. Multiply both sides of the equation by 200000000000\left(100000x-151\right)\left(100000x+151\right).
-1330000000000x^{2}+2391843032533=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1330000000000\right)\times 2391843032533}}{2\left(-1330000000000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1330000000000 for a, 0 for b, and 2391843032533 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1330000000000\right)\times 2391843032533}}{2\left(-1330000000000\right)}
Square 0.
x=\frac{0±\sqrt{5320000000000\times 2391843032533}}{2\left(-1330000000000\right)}
Multiply -4 times -1330000000000.
x=\frac{0±\sqrt{12724604933075560000000000}}{2\left(-1330000000000\right)}
Multiply 5320000000000 times 2391843032533.
x=\frac{0±200000\sqrt{318115123326889}}{2\left(-1330000000000\right)}
Take the square root of 12724604933075560000000000.
x=\frac{0±200000\sqrt{318115123326889}}{-2660000000000}
Multiply 2 times -1330000000000.
x=-\frac{\sqrt{318115123326889}}{13300000}
Now solve the equation x=\frac{0±200000\sqrt{318115123326889}}{-2660000000000} when ± is plus.
x=\frac{\sqrt{318115123326889}}{13300000}
Now solve the equation x=\frac{0±200000\sqrt{318115123326889}}{-2660000000000} when ± is minus.
x=-\frac{\sqrt{318115123326889}}{13300000} x=\frac{\sqrt{318115123326889}}{13300000}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}