Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 7\sqrt{2}+3\sqrt{72}}{5\sqrt{75}-3\sqrt{48}}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
\frac{14\sqrt{2}+3\sqrt{72}}{5\sqrt{75}-3\sqrt{48}}
Multiply 2 and 7 to get 14.
\frac{14\sqrt{2}+3\times 6\sqrt{2}}{5\sqrt{75}-3\sqrt{48}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{14\sqrt{2}+18\sqrt{2}}{5\sqrt{75}-3\sqrt{48}}
Multiply 3 and 6 to get 18.
\frac{32\sqrt{2}}{5\sqrt{75}-3\sqrt{48}}
Combine 14\sqrt{2} and 18\sqrt{2} to get 32\sqrt{2}.
\frac{32\sqrt{2}}{5\times 5\sqrt{3}-3\sqrt{48}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{32\sqrt{2}}{25\sqrt{3}-3\sqrt{48}}
Multiply 5 and 5 to get 25.
\frac{32\sqrt{2}}{25\sqrt{3}-3\times 4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{32\sqrt{2}}{25\sqrt{3}-12\sqrt{3}}
Multiply -3 and 4 to get -12.
\frac{32\sqrt{2}}{13\sqrt{3}}
Combine 25\sqrt{3} and -12\sqrt{3} to get 13\sqrt{3}.
\frac{32\sqrt{2}\sqrt{3}}{13\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{32\sqrt{2}}{13\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{32\sqrt{2}\sqrt{3}}{13\times 3}
The square of \sqrt{3} is 3.
\frac{32\sqrt{6}}{13\times 3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{32\sqrt{6}}{39}
Multiply 13 and 3 to get 39.