Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{\left(2\sqrt{5}+4\right)\left(2\sqrt{5}-4\right)}
Rationalize the denominator of \frac{2\sqrt{5}}{2\sqrt{5}+4} by multiplying numerator and denominator by 2\sqrt{5}-4.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{\left(2\sqrt{5}\right)^{2}-4^{2}}
Consider \left(2\sqrt{5}+4\right)\left(2\sqrt{5}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{2^{2}\left(\sqrt{5}\right)^{2}-4^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4\left(\sqrt{5}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4\times 5-4^{2}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{20-4^{2}}
Multiply 4 and 5 to get 20.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{20-16}
Calculate 4 to the power of 2 and get 16.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4}
Subtract 16 from 20 to get 4.
\frac{1}{2}\sqrt{5}\left(2\sqrt{5}-4\right)
Divide 2\sqrt{5}\left(2\sqrt{5}-4\right) by 4 to get \frac{1}{2}\sqrt{5}\left(2\sqrt{5}-4\right).
\frac{1}{2}\sqrt{5}\times 2\sqrt{5}+\frac{1}{2}\sqrt{5}\left(-4\right)
Use the distributive property to multiply \frac{1}{2}\sqrt{5} by 2\sqrt{5}-4.
\frac{1}{2}\times 5\times 2+\frac{1}{2}\sqrt{5}\left(-4\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5}{2}\times 2+\frac{1}{2}\sqrt{5}\left(-4\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
5+\frac{1}{2}\sqrt{5}\left(-4\right)
Cancel out 2 and 2.
5+\frac{-4}{2}\sqrt{5}
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
5-2\sqrt{5}
Divide -4 by 2 to get -2.