Evaluate
5-2\sqrt{5}\approx 0.527864045
Share
Copied to clipboard
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{\left(2\sqrt{5}+4\right)\left(2\sqrt{5}-4\right)}
Rationalize the denominator of \frac{2\sqrt{5}}{2\sqrt{5}+4} by multiplying numerator and denominator by 2\sqrt{5}-4.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{\left(2\sqrt{5}\right)^{2}-4^{2}}
Consider \left(2\sqrt{5}+4\right)\left(2\sqrt{5}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{2^{2}\left(\sqrt{5}\right)^{2}-4^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4\left(\sqrt{5}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4\times 5-4^{2}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{20-4^{2}}
Multiply 4 and 5 to get 20.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{20-16}
Calculate 4 to the power of 2 and get 16.
\frac{2\sqrt{5}\left(2\sqrt{5}-4\right)}{4}
Subtract 16 from 20 to get 4.
\frac{1}{2}\sqrt{5}\left(2\sqrt{5}-4\right)
Divide 2\sqrt{5}\left(2\sqrt{5}-4\right) by 4 to get \frac{1}{2}\sqrt{5}\left(2\sqrt{5}-4\right).
\frac{1}{2}\sqrt{5}\times 2\sqrt{5}+\frac{1}{2}\sqrt{5}\left(-4\right)
Use the distributive property to multiply \frac{1}{2}\sqrt{5} by 2\sqrt{5}-4.
\frac{1}{2}\times 5\times 2+\frac{1}{2}\sqrt{5}\left(-4\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5}{2}\times 2+\frac{1}{2}\sqrt{5}\left(-4\right)
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
5+\frac{1}{2}\sqrt{5}\left(-4\right)
Cancel out 2 and 2.
5+\frac{-4}{2}\sqrt{5}
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
5-2\sqrt{5}
Divide -4 by 2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}