Solve for x
x = -\frac{\pi}{2} \approx -1.570796327
Graph
Share
Copied to clipboard
2\pi +x=\pi -x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2\pi +x+x=\pi
Add x to both sides.
2\pi +2x=\pi
Combine x and x to get 2x.
2x=\pi -2\pi
Subtract 2\pi from both sides.
2x=-\pi
Combine \pi and -2\pi to get -\pi .
\frac{2x}{2}=-\frac{\pi }{2}
Divide both sides by 2.
x=-\frac{\pi }{2}
Dividing by 2 undoes the multiplication by 2.
x=-\frac{\pi }{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}