Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(x+\sqrt{2}\right)}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}-x-\sqrt{2}
Rationalize the denominator of \frac{2}{x-\sqrt{2}} by multiplying numerator and denominator by x+\sqrt{2}.
\frac{2\left(x+\sqrt{2}\right)}{x^{2}-\left(\sqrt{2}\right)^{2}}-x-\sqrt{2}
Consider \left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(x+\sqrt{2}\right)}{x^{2}-2}-x-\sqrt{2}
The square of \sqrt{2} is 2.
\frac{2\left(x+\sqrt{2}\right)}{x^{2}-2}+\frac{\left(-x-\sqrt{2}\right)\left(x^{2}-2\right)}{x^{2}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-\sqrt{2} times \frac{x^{2}-2}{x^{2}-2}.
\frac{2\left(x+\sqrt{2}\right)+\left(-x-\sqrt{2}\right)\left(x^{2}-2\right)}{x^{2}-2}
Since \frac{2\left(x+\sqrt{2}\right)}{x^{2}-2} and \frac{\left(-x-\sqrt{2}\right)\left(x^{2}-2\right)}{x^{2}-2} have the same denominator, add them by adding their numerators.
\frac{2x+2\sqrt{2}-x^{3}+2x-\sqrt{2}x^{2}+2\sqrt{2}}{x^{2}-2}
Do the multiplications in 2\left(x+\sqrt{2}\right)+\left(-x-\sqrt{2}\right)\left(x^{2}-2\right).
\frac{4x-\sqrt{2}x^{2}+4\sqrt{2}-x^{3}}{x^{2}-2}
Combine like terms in 2x+2\sqrt{2}-x^{3}+2x-\sqrt{2}x^{2}+2\sqrt{2}.