Solve for a
a=-2
Share
Copied to clipboard
a\left(a+1\right)\times 2+a\left(a-1\right)\times 3=a\times 7a-\left(a^{2}-1\right)\times 2
Variable a cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by a\left(a-1\right)\left(a+1\right), the least common multiple of a-1,a+1,a^{2}-1,a.
\left(a^{2}+a\right)\times 2+a\left(a-1\right)\times 3=a\times 7a-\left(a^{2}-1\right)\times 2
Use the distributive property to multiply a by a+1.
2a^{2}+2a+a\left(a-1\right)\times 3=a\times 7a-\left(a^{2}-1\right)\times 2
Use the distributive property to multiply a^{2}+a by 2.
2a^{2}+2a+\left(a^{2}-a\right)\times 3=a\times 7a-\left(a^{2}-1\right)\times 2
Use the distributive property to multiply a by a-1.
2a^{2}+2a+3a^{2}-3a=a\times 7a-\left(a^{2}-1\right)\times 2
Use the distributive property to multiply a^{2}-a by 3.
5a^{2}+2a-3a=a\times 7a-\left(a^{2}-1\right)\times 2
Combine 2a^{2} and 3a^{2} to get 5a^{2}.
5a^{2}-a=a\times 7a-\left(a^{2}-1\right)\times 2
Combine 2a and -3a to get -a.
5a^{2}-a=a^{2}\times 7-\left(a^{2}-1\right)\times 2
Multiply a and a to get a^{2}.
5a^{2}-a=a^{2}\times 7-\left(2a^{2}-2\right)
Use the distributive property to multiply a^{2}-1 by 2.
5a^{2}-a=a^{2}\times 7-2a^{2}+2
To find the opposite of 2a^{2}-2, find the opposite of each term.
5a^{2}-a=5a^{2}+2
Combine a^{2}\times 7 and -2a^{2} to get 5a^{2}.
5a^{2}-a-5a^{2}=2
Subtract 5a^{2} from both sides.
-a=2
Combine 5a^{2} and -5a^{2} to get 0.
a=-2
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}