Solve for x
x=-\frac{8}{59}\approx -0.13559322
Graph
Share
Copied to clipboard
\frac{2}{3}\times 5x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Use the distributive property to multiply \frac{2}{3} by 5x-1.
\frac{2\times 5}{3}x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Express \frac{2}{3}\times 5 as a single fraction.
\frac{10}{3}x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Multiply 2 and 5 to get 10.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}\left(x+2\right)
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x-\frac{3}{5}\times 2
Use the distributive property to multiply -\frac{3}{5} by x+2.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x+\frac{-3\times 2}{5}
Express -\frac{3}{5}\times 2 as a single fraction.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x+\frac{-6}{5}
Multiply -3 and 2 to get -6.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
\frac{10}{3}x-\frac{2}{3}+\frac{3}{5}x=-\frac{6}{5}
Add \frac{3}{5}x to both sides.
\frac{59}{15}x-\frac{2}{3}=-\frac{6}{5}
Combine \frac{10}{3}x and \frac{3}{5}x to get \frac{59}{15}x.
\frac{59}{15}x=-\frac{6}{5}+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{59}{15}x=-\frac{18}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{6}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{59}{15}x=\frac{-18+10}{15}
Since -\frac{18}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{59}{15}x=-\frac{8}{15}
Add -18 and 10 to get -8.
x=-\frac{8}{15}\times \frac{15}{59}
Multiply both sides by \frac{15}{59}, the reciprocal of \frac{59}{15}.
x=\frac{-8\times 15}{15\times 59}
Multiply -\frac{8}{15} times \frac{15}{59} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-8}{59}
Cancel out 15 in both numerator and denominator.
x=-\frac{8}{59}
Fraction \frac{-8}{59} can be rewritten as -\frac{8}{59} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}