Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}\times 5x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Use the distributive property to multiply \frac{2}{3} by 5x-1.
\frac{2\times 5}{3}x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Express \frac{2}{3}\times 5 as a single fraction.
\frac{10}{3}x+\frac{2}{3}\left(-1\right)=-\frac{3}{5}\left(x+2\right)
Multiply 2 and 5 to get 10.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}\left(x+2\right)
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x-\frac{3}{5}\times 2
Use the distributive property to multiply -\frac{3}{5} by x+2.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x+\frac{-3\times 2}{5}
Express -\frac{3}{5}\times 2 as a single fraction.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x+\frac{-6}{5}
Multiply -3 and 2 to get -6.
\frac{10}{3}x-\frac{2}{3}=-\frac{3}{5}x-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
\frac{10}{3}x-\frac{2}{3}+\frac{3}{5}x=-\frac{6}{5}
Add \frac{3}{5}x to both sides.
\frac{59}{15}x-\frac{2}{3}=-\frac{6}{5}
Combine \frac{10}{3}x and \frac{3}{5}x to get \frac{59}{15}x.
\frac{59}{15}x=-\frac{6}{5}+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{59}{15}x=-\frac{18}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{6}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{59}{15}x=\frac{-18+10}{15}
Since -\frac{18}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{59}{15}x=-\frac{8}{15}
Add -18 and 10 to get -8.
x=-\frac{8}{15}\times \frac{15}{59}
Multiply both sides by \frac{15}{59}, the reciprocal of \frac{59}{15}.
x=\frac{-8\times 15}{15\times 59}
Multiply -\frac{8}{15} times \frac{15}{59} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-8}{59}
Cancel out 15 in both numerator and denominator.
x=-\frac{8}{59}
Fraction \frac{-8}{59} can be rewritten as -\frac{8}{59} by extracting the negative sign.