Solve for x
x=6
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\left(-3\right)-\frac{1}{7}\left(x+1\right)=1
Use the distributive property to multiply \frac{2}{3} by x-3.
\frac{2}{3}x+\frac{2\left(-3\right)}{3}-\frac{1}{7}\left(x+1\right)=1
Express \frac{2}{3}\left(-3\right) as a single fraction.
\frac{2}{3}x+\frac{-6}{3}-\frac{1}{7}\left(x+1\right)=1
Multiply 2 and -3 to get -6.
\frac{2}{3}x-2-\frac{1}{7}\left(x+1\right)=1
Divide -6 by 3 to get -2.
\frac{2}{3}x-2-\frac{1}{7}x-\frac{1}{7}=1
Use the distributive property to multiply -\frac{1}{7} by x+1.
\frac{11}{21}x-2-\frac{1}{7}=1
Combine \frac{2}{3}x and -\frac{1}{7}x to get \frac{11}{21}x.
\frac{11}{21}x-\frac{14}{7}-\frac{1}{7}=1
Convert -2 to fraction -\frac{14}{7}.
\frac{11}{21}x+\frac{-14-1}{7}=1
Since -\frac{14}{7} and \frac{1}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{21}x-\frac{15}{7}=1
Subtract 1 from -14 to get -15.
\frac{11}{21}x=1+\frac{15}{7}
Add \frac{15}{7} to both sides.
\frac{11}{21}x=\frac{7}{7}+\frac{15}{7}
Convert 1 to fraction \frac{7}{7}.
\frac{11}{21}x=\frac{7+15}{7}
Since \frac{7}{7} and \frac{15}{7} have the same denominator, add them by adding their numerators.
\frac{11}{21}x=\frac{22}{7}
Add 7 and 15 to get 22.
x=\frac{22}{7}\times \frac{21}{11}
Multiply both sides by \frac{21}{11}, the reciprocal of \frac{11}{21}.
x=\frac{22\times 21}{7\times 11}
Multiply \frac{22}{7} times \frac{21}{11} by multiplying numerator times numerator and denominator times denominator.
x=\frac{462}{77}
Do the multiplications in the fraction \frac{22\times 21}{7\times 11}.
x=6
Divide 462 by 77 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}