Solve for x
x = \frac{140}{9} = 15\frac{5}{9} \approx 15.555555556
Graph
Share
Copied to clipboard
60\left(\frac{6x}{10}-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Multiply both sides of the equation by 90, the least common multiple of 3,10,6,5,9,2.
60\left(\frac{3}{5}x-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Divide 6x by 10 to get \frac{3}{5}x.
60\times \frac{3}{5}x+60\left(-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Use the distributive property to multiply 60 by \frac{3}{5}x-\frac{5}{6}.
\frac{60\times 3}{5}x+60\left(-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Express 60\times \frac{3}{5} as a single fraction.
\frac{180}{5}x+60\left(-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Multiply 60 and 3 to get 180.
36x+60\left(-\frac{5}{6}\right)-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Divide 180 by 5 to get 36.
36x+\frac{60\left(-5\right)}{6}-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Express 60\left(-\frac{5}{6}\right) as a single fraction.
36x+\frac{-300}{6}-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Multiply 60 and -5 to get -300.
36x-50-54\left(\frac{25}{9}+\frac{5x}{6}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Divide -300 by 6 to get -50.
36x-50-54\left(\frac{25\times 2}{18}+\frac{3\times 5x}{18}\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 6 is 18. Multiply \frac{25}{9} times \frac{2}{2}. Multiply \frac{5x}{6} times \frac{3}{3}.
36x-50-54\times \frac{25\times 2+3\times 5x}{18}=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Since \frac{25\times 2}{18} and \frac{3\times 5x}{18} have the same denominator, add them by adding their numerators.
36x-50-54\times \frac{50+15x}{18}=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Do the multiplications in 25\times 2+3\times 5x.
36x-50-3\left(50+15x\right)=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Cancel out 18, the greatest common factor in 54 and 18.
36x-50-150-45x=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Use the distributive property to multiply -3 by 50+15x.
36x-200-45x=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Subtract 150 from -50 to get -200.
-9x-200=18\times 3x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Combine 36x and -45x to get -9x.
-9x-200=54x-45\left(\frac{8x}{5}+\frac{4}{3}\right)
Multiply 18 and 3 to get 54.
-9x-200=54x-45\left(\frac{3\times 8x}{15}+\frac{4\times 5}{15}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{8x}{5} times \frac{3}{3}. Multiply \frac{4}{3} times \frac{5}{5}.
-9x-200=54x-45\times \frac{3\times 8x+4\times 5}{15}
Since \frac{3\times 8x}{15} and \frac{4\times 5}{15} have the same denominator, add them by adding their numerators.
-9x-200=54x-45\times \frac{24x+20}{15}
Do the multiplications in 3\times 8x+4\times 5.
-9x-200=54x-3\left(24x+20\right)
Cancel out 15, the greatest common factor in 45 and 15.
-9x-200=54x-72x-60
Use the distributive property to multiply -3 by 24x+20.
-9x-200=-18x-60
Combine 54x and -72x to get -18x.
-9x-200+18x=-60
Add 18x to both sides.
9x-200=-60
Combine -9x and 18x to get 9x.
9x=-60+200
Add 200 to both sides.
9x=140
Add -60 and 200 to get 140.
x=\frac{140}{9}
Divide both sides by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}