Verify
false
Share
Copied to clipboard
1-3\left(1-\frac{2}{4}\right)=\frac{2}{8}-2
Divide 2 by 2 to get 1.
1-3\left(1-\frac{1}{2}\right)=\frac{2}{8}-2
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
1-3\left(\frac{2}{2}-\frac{1}{2}\right)=\frac{2}{8}-2
Convert 1 to fraction \frac{2}{2}.
1-3\times \frac{2-1}{2}=\frac{2}{8}-2
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
1-3\times \frac{1}{2}=\frac{2}{8}-2
Subtract 1 from 2 to get 1.
1-\frac{3}{2}=\frac{2}{8}-2
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{2}{2}-\frac{3}{2}=\frac{2}{8}-2
Convert 1 to fraction \frac{2}{2}.
\frac{2-3}{2}=\frac{2}{8}-2
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}=\frac{2}{8}-2
Subtract 3 from 2 to get -1.
-\frac{1}{2}=\frac{1}{4}-2
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
-\frac{1}{2}=\frac{1}{4}-\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
-\frac{1}{2}=\frac{1-8}{4}
Since \frac{1}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}=-\frac{7}{4}
Subtract 8 from 1 to get -7.
-\frac{2}{4}=-\frac{7}{4}
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and -\frac{7}{4} to fractions with denominator 4.
\text{false}
Compare -\frac{2}{4} and -\frac{7}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}