Solve for t
t = \frac{\log_{\frac{45633}{45625}} {(\frac{178}{81})}}{365} \approx 12.30317844
Solve for t (complex solution)
t=\frac{i\times 2\pi n_{1}}{365\ln(\frac{45633}{45625})}-\frac{\log_{\frac{45633}{45625}}\left(\frac{81}{178}\right)}{365}
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{178}{81}=\left(1+\frac{0.064}{365}\right)^{365t}
Reduce the fraction \frac{178000}{81000} to lowest terms by extracting and canceling out 1000.
\frac{178}{81}=\left(1+\frac{64}{365000}\right)^{365t}
Expand \frac{0.064}{365} by multiplying both numerator and the denominator by 1000.
\frac{178}{81}=\left(1+\frac{8}{45625}\right)^{365t}
Reduce the fraction \frac{64}{365000} to lowest terms by extracting and canceling out 8.
\frac{178}{81}=\left(\frac{45633}{45625}\right)^{365t}
Add 1 and \frac{8}{45625} to get \frac{45633}{45625}.
\left(\frac{45633}{45625}\right)^{365t}=\frac{178}{81}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{45633}{45625}\right)^{365t})=\log(\frac{178}{81})
Take the logarithm of both sides of the equation.
365t\log(\frac{45633}{45625})=\log(\frac{178}{81})
The logarithm of a number raised to a power is the power times the logarithm of the number.
365t=\frac{\log(\frac{178}{81})}{\log(\frac{45633}{45625})}
Divide both sides by \log(\frac{45633}{45625}).
365t=\log_{\frac{45633}{45625}}\left(\frac{178}{81}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(\frac{178}{81})}{365\ln(\frac{45633}{45625})}
Divide both sides by 365.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}