Evaluate
\frac{177}{160}=1.10625
Factor
\frac{3 \cdot 59}{2 ^ {5} \cdot 5} = 1\frac{17}{160} = 1.10625
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)177}\\\end{array}
Use the 1^{st} digit 1 from dividend 177
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)177}\\\end{array}
Since 1 is less than 160, use the next digit 7 from dividend 177 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)177}\\\end{array}
Use the 2^{nd} digit 7 from dividend 177
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)177}\\\end{array}
Since 17 is less than 160, use the next digit 7 from dividend 177 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)177}\\\end{array}
Use the 3^{rd} digit 7 from dividend 177
\begin{array}{l}\phantom{160)}001\phantom{6}\\160\overline{)177}\\\phantom{160)}\underline{\phantom{}160\phantom{}}\\\phantom{160)9}17\\\end{array}
Find closest multiple of 160 to 177. We see that 1 \times 160 = 160 is the nearest. Now subtract 160 from 177 to get reminder 17. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }17
Since 17 is less than 160, stop the division. The reminder is 17. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}