Evaluate
\frac{58}{33}\approx 1.757575758
Factor
\frac{2 \cdot 29}{3 \cdot 11} = 1\frac{25}{33} = 1.7575757575757576
Share
Copied to clipboard
\begin{array}{l}\phantom{99)}\phantom{1}\\99\overline{)174}\\\end{array}
Use the 1^{st} digit 1 from dividend 174
\begin{array}{l}\phantom{99)}0\phantom{2}\\99\overline{)174}\\\end{array}
Since 1 is less than 99, use the next digit 7 from dividend 174 and add 0 to the quotient
\begin{array}{l}\phantom{99)}0\phantom{3}\\99\overline{)174}\\\end{array}
Use the 2^{nd} digit 7 from dividend 174
\begin{array}{l}\phantom{99)}00\phantom{4}\\99\overline{)174}\\\end{array}
Since 17 is less than 99, use the next digit 4 from dividend 174 and add 0 to the quotient
\begin{array}{l}\phantom{99)}00\phantom{5}\\99\overline{)174}\\\end{array}
Use the 3^{rd} digit 4 from dividend 174
\begin{array}{l}\phantom{99)}001\phantom{6}\\99\overline{)174}\\\phantom{99)}\underline{\phantom{9}99\phantom{}}\\\phantom{99)9}75\\\end{array}
Find closest multiple of 99 to 174. We see that 1 \times 99 = 99 is the nearest. Now subtract 99 from 174 to get reminder 75. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }75
Since 75 is less than 99, stop the division. The reminder is 75. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}