Evaluate
\frac{171}{40}=4.275
Factor
\frac{3 ^ {2} \cdot 19}{2 ^ {3} \cdot 5} = 4\frac{11}{40} = 4.275
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)171}\\\end{array}
Use the 1^{st} digit 1 from dividend 171
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)171}\\\end{array}
Since 1 is less than 40, use the next digit 7 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)171}\\\end{array}
Use the 2^{nd} digit 7 from dividend 171
\begin{array}{l}\phantom{40)}00\phantom{4}\\40\overline{)171}\\\end{array}
Since 17 is less than 40, use the next digit 1 from dividend 171 and add 0 to the quotient
\begin{array}{l}\phantom{40)}00\phantom{5}\\40\overline{)171}\\\end{array}
Use the 3^{rd} digit 1 from dividend 171
\begin{array}{l}\phantom{40)}004\phantom{6}\\40\overline{)171}\\\phantom{40)}\underline{\phantom{}160\phantom{}}\\\phantom{40)9}11\\\end{array}
Find closest multiple of 40 to 171. We see that 4 \times 40 = 160 is the nearest. Now subtract 160 from 171 to get reminder 11. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }11
Since 11 is less than 40, stop the division. The reminder is 11. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}