Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{17\left(y-20\right)}{20y}+8y=0.6
Variable y cannot be equal to 20 since division by zero is not defined. Divide 17 by \frac{20y}{y-20} by multiplying 17 by the reciprocal of \frac{20y}{y-20}.
\frac{17\left(y-20\right)}{20y}+\frac{8y\times 20y}{20y}=0.6
To add or subtract expressions, expand them to make their denominators the same. Multiply 8y times \frac{20y}{20y}.
\frac{17\left(y-20\right)+8y\times 20y}{20y}=0.6
Since \frac{17\left(y-20\right)}{20y} and \frac{8y\times 20y}{20y} have the same denominator, add them by adding their numerators.
\frac{17y-340+160y^{2}}{20y}=0.6
Do the multiplications in 17\left(y-20\right)+8y\times 20y.
\frac{160\left(y-\left(-\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{20y}=0.6
Factor the expressions that are not already factored in \frac{17y-340+160y^{2}}{20y}.
\frac{8\left(y-\left(-\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{y}=0.6
Cancel out 20 in both numerator and denominator.
\frac{8\left(y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{y}=0.6
To find the opposite of -\frac{1}{320}\sqrt{217889}-\frac{17}{320}, find the opposite of each term.
\frac{8\left(y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)\left(y-\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)}{y}=0.6
To find the opposite of \frac{1}{320}\sqrt{217889}-\frac{17}{320}, find the opposite of each term.
\frac{\left(8y+\frac{1}{40}\sqrt{217889}+\frac{17}{40}\right)\left(y-\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)}{y}=0.6
Use the distributive property to multiply 8 by y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}.
\frac{8y^{2}+\frac{17}{20}y-\frac{1}{12800}\left(\sqrt{217889}\right)^{2}+\frac{289}{12800}}{y}=0.6
Use the distributive property to multiply 8y+\frac{1}{40}\sqrt{217889}+\frac{17}{40} by y-\frac{1}{320}\sqrt{217889}+\frac{17}{320} and combine like terms.
\frac{8y^{2}+\frac{17}{20}y-\frac{1}{12800}\times 217889+\frac{289}{12800}}{y}=0.6
The square of \sqrt{217889} is 217889.
\frac{8y^{2}+\frac{17}{20}y-\frac{217889}{12800}+\frac{289}{12800}}{y}=0.6
Multiply -\frac{1}{12800} and 217889 to get -\frac{217889}{12800}.
\frac{8y^{2}+\frac{17}{20}y-17}{y}=0.6
Add -\frac{217889}{12800} and \frac{289}{12800} to get -17.
\frac{8y^{2}+\frac{17}{20}y-17}{y}-0.6=0
Subtract 0.6 from both sides.
8y^{2}+\frac{17}{20}y-17+y\left(-0.6\right)=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
8y^{2}-0.6y+\frac{17}{20}y-17=0
Reorder the terms.
8y^{2}+\frac{1}{4}y-17=0
Combine -0.6y and \frac{17}{20}y to get \frac{1}{4}y.
y=\frac{-\frac{1}{4}±\sqrt{\left(\frac{1}{4}\right)^{2}-4\times 8\left(-17\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, \frac{1}{4} for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}-4\times 8\left(-17\right)}}{2\times 8}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}-32\left(-17\right)}}{2\times 8}
Multiply -4 times 8.
y=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}+544}}{2\times 8}
Multiply -32 times -17.
y=\frac{-\frac{1}{4}±\sqrt{\frac{8705}{16}}}{2\times 8}
Add \frac{1}{16} to 544.
y=\frac{-\frac{1}{4}±\frac{\sqrt{8705}}{4}}{2\times 8}
Take the square root of \frac{8705}{16}.
y=\frac{-\frac{1}{4}±\frac{\sqrt{8705}}{4}}{16}
Multiply 2 times 8.
y=\frac{\sqrt{8705}-1}{4\times 16}
Now solve the equation y=\frac{-\frac{1}{4}±\frac{\sqrt{8705}}{4}}{16} when ± is plus. Add -\frac{1}{4} to \frac{\sqrt{8705}}{4}.
y=\frac{\sqrt{8705}-1}{64}
Divide \frac{-1+\sqrt{8705}}{4} by 16.
y=\frac{-\sqrt{8705}-1}{4\times 16}
Now solve the equation y=\frac{-\frac{1}{4}±\frac{\sqrt{8705}}{4}}{16} when ± is minus. Subtract \frac{\sqrt{8705}}{4} from -\frac{1}{4}.
y=\frac{-\sqrt{8705}-1}{64}
Divide \frac{-1-\sqrt{8705}}{4} by 16.
y=\frac{\sqrt{8705}-1}{64} y=\frac{-\sqrt{8705}-1}{64}
The equation is now solved.
\frac{17\left(y-20\right)}{20y}+8y=0.6
Variable y cannot be equal to 20 since division by zero is not defined. Divide 17 by \frac{20y}{y-20} by multiplying 17 by the reciprocal of \frac{20y}{y-20}.
\frac{17\left(y-20\right)}{20y}+\frac{8y\times 20y}{20y}=0.6
To add or subtract expressions, expand them to make their denominators the same. Multiply 8y times \frac{20y}{20y}.
\frac{17\left(y-20\right)+8y\times 20y}{20y}=0.6
Since \frac{17\left(y-20\right)}{20y} and \frac{8y\times 20y}{20y} have the same denominator, add them by adding their numerators.
\frac{17y-340+160y^{2}}{20y}=0.6
Do the multiplications in 17\left(y-20\right)+8y\times 20y.
\frac{160\left(y-\left(-\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{20y}=0.6
Factor the expressions that are not already factored in \frac{17y-340+160y^{2}}{20y}.
\frac{8\left(y-\left(-\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{y}=0.6
Cancel out 20 in both numerator and denominator.
\frac{8\left(y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)\left(y-\left(\frac{1}{320}\sqrt{217889}-\frac{17}{320}\right)\right)}{y}=0.6
To find the opposite of -\frac{1}{320}\sqrt{217889}-\frac{17}{320}, find the opposite of each term.
\frac{8\left(y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)\left(y-\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)}{y}=0.6
To find the opposite of \frac{1}{320}\sqrt{217889}-\frac{17}{320}, find the opposite of each term.
\frac{\left(8y+\frac{1}{40}\sqrt{217889}+\frac{17}{40}\right)\left(y-\frac{1}{320}\sqrt{217889}+\frac{17}{320}\right)}{y}=0.6
Use the distributive property to multiply 8 by y+\frac{1}{320}\sqrt{217889}+\frac{17}{320}.
\frac{8y^{2}+\frac{17}{20}y-\frac{1}{12800}\left(\sqrt{217889}\right)^{2}+\frac{289}{12800}}{y}=0.6
Use the distributive property to multiply 8y+\frac{1}{40}\sqrt{217889}+\frac{17}{40} by y-\frac{1}{320}\sqrt{217889}+\frac{17}{320} and combine like terms.
\frac{8y^{2}+\frac{17}{20}y-\frac{1}{12800}\times 217889+\frac{289}{12800}}{y}=0.6
The square of \sqrt{217889} is 217889.
\frac{8y^{2}+\frac{17}{20}y-\frac{217889}{12800}+\frac{289}{12800}}{y}=0.6
Multiply -\frac{1}{12800} and 217889 to get -\frac{217889}{12800}.
\frac{8y^{2}+\frac{17}{20}y-17}{y}=0.6
Add -\frac{217889}{12800} and \frac{289}{12800} to get -17.
8y^{2}+\frac{17}{20}y-17=0.6y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
8y^{2}+\frac{17}{20}y-17-0.6y=0
Subtract 0.6y from both sides.
8y^{2}+\frac{1}{4}y-17=0
Combine \frac{17}{20}y and -0.6y to get \frac{1}{4}y.
8y^{2}+\frac{1}{4}y=17
Add 17 to both sides. Anything plus zero gives itself.
\frac{8y^{2}+\frac{1}{4}y}{8}=\frac{17}{8}
Divide both sides by 8.
y^{2}+\frac{\frac{1}{4}}{8}y=\frac{17}{8}
Dividing by 8 undoes the multiplication by 8.
y^{2}+\frac{1}{32}y=\frac{17}{8}
Divide \frac{1}{4} by 8.
y^{2}+\frac{1}{32}y+\left(\frac{1}{64}\right)^{2}=\frac{17}{8}+\left(\frac{1}{64}\right)^{2}
Divide \frac{1}{32}, the coefficient of the x term, by 2 to get \frac{1}{64}. Then add the square of \frac{1}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{1}{32}y+\frac{1}{4096}=\frac{17}{8}+\frac{1}{4096}
Square \frac{1}{64} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{1}{32}y+\frac{1}{4096}=\frac{8705}{4096}
Add \frac{17}{8} to \frac{1}{4096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{1}{64}\right)^{2}=\frac{8705}{4096}
Factor y^{2}+\frac{1}{32}y+\frac{1}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{64}\right)^{2}}=\sqrt{\frac{8705}{4096}}
Take the square root of both sides of the equation.
y+\frac{1}{64}=\frac{\sqrt{8705}}{64} y+\frac{1}{64}=-\frac{\sqrt{8705}}{64}
Simplify.
y=\frac{\sqrt{8705}-1}{64} y=\frac{-\sqrt{8705}-1}{64}
Subtract \frac{1}{64} from both sides of the equation.