Evaluate
\frac{1}{20}=0.05
Factor
\frac{1}{2 ^ {2} \cdot 5} = 0.05
Share
Copied to clipboard
\frac{16\times 2}{25\times 3}+\frac{7}{12}-\frac{\frac{9}{10}}{\frac{15}{16}}
Multiply \frac{16}{25} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{32}{75}+\frac{7}{12}-\frac{\frac{9}{10}}{\frac{15}{16}}
Do the multiplications in the fraction \frac{16\times 2}{25\times 3}.
\frac{128}{300}+\frac{175}{300}-\frac{\frac{9}{10}}{\frac{15}{16}}
Least common multiple of 75 and 12 is 300. Convert \frac{32}{75} and \frac{7}{12} to fractions with denominator 300.
\frac{128+175}{300}-\frac{\frac{9}{10}}{\frac{15}{16}}
Since \frac{128}{300} and \frac{175}{300} have the same denominator, add them by adding their numerators.
\frac{303}{300}-\frac{\frac{9}{10}}{\frac{15}{16}}
Add 128 and 175 to get 303.
\frac{101}{100}-\frac{\frac{9}{10}}{\frac{15}{16}}
Reduce the fraction \frac{303}{300} to lowest terms by extracting and canceling out 3.
\frac{101}{100}-\frac{9}{10}\times \frac{16}{15}
Divide \frac{9}{10} by \frac{15}{16} by multiplying \frac{9}{10} by the reciprocal of \frac{15}{16}.
\frac{101}{100}-\frac{9\times 16}{10\times 15}
Multiply \frac{9}{10} times \frac{16}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{101}{100}-\frac{144}{150}
Do the multiplications in the fraction \frac{9\times 16}{10\times 15}.
\frac{101}{100}-\frac{24}{25}
Reduce the fraction \frac{144}{150} to lowest terms by extracting and canceling out 6.
\frac{101}{100}-\frac{96}{100}
Least common multiple of 100 and 25 is 100. Convert \frac{101}{100} and \frac{24}{25} to fractions with denominator 100.
\frac{101-96}{100}
Since \frac{101}{100} and \frac{96}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{100}
Subtract 96 from 101 to get 5.
\frac{1}{20}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}