Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{24}{\sqrt{32}}-2\sqrt{48}-3\sqrt{8\times 54}
Rationalize the denominator of \frac{16}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{16\sqrt{2}}{2}-\frac{24}{\sqrt{32}}-2\sqrt{48}-3\sqrt{8\times 54}
The square of \sqrt{2} is 2.
8\sqrt{2}-\frac{24}{\sqrt{32}}-2\sqrt{48}-3\sqrt{8\times 54}
Divide 16\sqrt{2} by 2 to get 8\sqrt{2}.
8\sqrt{2}-\frac{24}{4\sqrt{2}}-2\sqrt{48}-3\sqrt{8\times 54}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
8\sqrt{2}-\frac{24\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-2\sqrt{48}-3\sqrt{8\times 54}
Rationalize the denominator of \frac{24}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
8\sqrt{2}-\frac{24\sqrt{2}}{4\times 2}-2\sqrt{48}-3\sqrt{8\times 54}
The square of \sqrt{2} is 2.
8\sqrt{2}-3\sqrt{2}-2\sqrt{48}-3\sqrt{8\times 54}
Cancel out 2\times 4 in both numerator and denominator.
8\sqrt{2}-3\sqrt{2}-2\times 4\sqrt{3}-3\sqrt{8\times 54}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
8\sqrt{2}-3\sqrt{2}-8\sqrt{3}-3\sqrt{8\times 54}
Multiply -2 and 4 to get -8.
8\sqrt{2}-3\sqrt{2}-8\sqrt{3}-3\sqrt{432}
Multiply 8 and 54 to get 432.
8\sqrt{2}-3\sqrt{2}-8\sqrt{3}-3\times 12\sqrt{3}
Factor 432=12^{2}\times 3. Rewrite the square root of the product \sqrt{12^{2}\times 3} as the product of square roots \sqrt{12^{2}}\sqrt{3}. Take the square root of 12^{2}.
8\sqrt{2}-3\sqrt{2}-8\sqrt{3}-36\sqrt{3}
Multiply 3 and 12 to get 36.
8\sqrt{2}-3\sqrt{2}-44\sqrt{3}
Combine -8\sqrt{3} and -36\sqrt{3} to get -44\sqrt{3}.
5\sqrt{2}-44\sqrt{3}
Combine 8\sqrt{2} and -3\sqrt{2} to get 5\sqrt{2}.