Evaluate
\frac{23}{19}\approx 1.210526316
Factor
\frac{23}{19} = 1\frac{4}{19} = 1.2105263157894737
Share
Copied to clipboard
\begin{array}{l}\phantom{1159)}\phantom{1}\\1159\overline{)1403}\\\end{array}
Use the 1^{st} digit 1 from dividend 1403
\begin{array}{l}\phantom{1159)}0\phantom{2}\\1159\overline{)1403}\\\end{array}
Since 1 is less than 1159, use the next digit 4 from dividend 1403 and add 0 to the quotient
\begin{array}{l}\phantom{1159)}0\phantom{3}\\1159\overline{)1403}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1403
\begin{array}{l}\phantom{1159)}00\phantom{4}\\1159\overline{)1403}\\\end{array}
Since 14 is less than 1159, use the next digit 0 from dividend 1403 and add 0 to the quotient
\begin{array}{l}\phantom{1159)}00\phantom{5}\\1159\overline{)1403}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1403
\begin{array}{l}\phantom{1159)}000\phantom{6}\\1159\overline{)1403}\\\end{array}
Since 140 is less than 1159, use the next digit 3 from dividend 1403 and add 0 to the quotient
\begin{array}{l}\phantom{1159)}000\phantom{7}\\1159\overline{)1403}\\\end{array}
Use the 4^{th} digit 3 from dividend 1403
\begin{array}{l}\phantom{1159)}0001\phantom{8}\\1159\overline{)1403}\\\phantom{1159)}\underline{\phantom{}1159\phantom{}}\\\phantom{1159)9}244\\\end{array}
Find closest multiple of 1159 to 1403. We see that 1 \times 1159 = 1159 is the nearest. Now subtract 1159 from 1403 to get reminder 244. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }244
Since 244 is less than 1159, stop the division. The reminder is 244. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}