Evaluate
\frac{3403}{2329}\approx 1.461142121
Factor
\frac{41 \cdot 83}{17 \cdot 137} = 1\frac{1074}{2329} = 1.4611421210820095
Share
Copied to clipboard
\begin{array}{l}\phantom{9316)}\phantom{1}\\9316\overline{)13612}\\\end{array}
Use the 1^{st} digit 1 from dividend 13612
\begin{array}{l}\phantom{9316)}0\phantom{2}\\9316\overline{)13612}\\\end{array}
Since 1 is less than 9316, use the next digit 3 from dividend 13612 and add 0 to the quotient
\begin{array}{l}\phantom{9316)}0\phantom{3}\\9316\overline{)13612}\\\end{array}
Use the 2^{nd} digit 3 from dividend 13612
\begin{array}{l}\phantom{9316)}00\phantom{4}\\9316\overline{)13612}\\\end{array}
Since 13 is less than 9316, use the next digit 6 from dividend 13612 and add 0 to the quotient
\begin{array}{l}\phantom{9316)}00\phantom{5}\\9316\overline{)13612}\\\end{array}
Use the 3^{rd} digit 6 from dividend 13612
\begin{array}{l}\phantom{9316)}000\phantom{6}\\9316\overline{)13612}\\\end{array}
Since 136 is less than 9316, use the next digit 1 from dividend 13612 and add 0 to the quotient
\begin{array}{l}\phantom{9316)}000\phantom{7}\\9316\overline{)13612}\\\end{array}
Use the 4^{th} digit 1 from dividend 13612
\begin{array}{l}\phantom{9316)}0000\phantom{8}\\9316\overline{)13612}\\\end{array}
Since 1361 is less than 9316, use the next digit 2 from dividend 13612 and add 0 to the quotient
\begin{array}{l}\phantom{9316)}0000\phantom{9}\\9316\overline{)13612}\\\end{array}
Use the 5^{th} digit 2 from dividend 13612
\begin{array}{l}\phantom{9316)}00001\phantom{10}\\9316\overline{)13612}\\\phantom{9316)}\underline{\phantom{9}9316\phantom{}}\\\phantom{9316)9}4296\\\end{array}
Find closest multiple of 9316 to 13612. We see that 1 \times 9316 = 9316 is the nearest. Now subtract 9316 from 13612 to get reminder 4296. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }4296
Since 4296 is less than 9316, stop the division. The reminder is 4296. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}