Evaluate
\frac{13495}{11919}\approx 1.132225858
Factor
\frac{5 \cdot 2699}{3 \cdot 29 \cdot 137} = 1\frac{1576}{11919} = 1.1322258578739828
Share
Copied to clipboard
\begin{array}{l}\phantom{11919)}\phantom{1}\\11919\overline{)13495}\\\end{array}
Use the 1^{st} digit 1 from dividend 13495
\begin{array}{l}\phantom{11919)}0\phantom{2}\\11919\overline{)13495}\\\end{array}
Since 1 is less than 11919, use the next digit 3 from dividend 13495 and add 0 to the quotient
\begin{array}{l}\phantom{11919)}0\phantom{3}\\11919\overline{)13495}\\\end{array}
Use the 2^{nd} digit 3 from dividend 13495
\begin{array}{l}\phantom{11919)}00\phantom{4}\\11919\overline{)13495}\\\end{array}
Since 13 is less than 11919, use the next digit 4 from dividend 13495 and add 0 to the quotient
\begin{array}{l}\phantom{11919)}00\phantom{5}\\11919\overline{)13495}\\\end{array}
Use the 3^{rd} digit 4 from dividend 13495
\begin{array}{l}\phantom{11919)}000\phantom{6}\\11919\overline{)13495}\\\end{array}
Since 134 is less than 11919, use the next digit 9 from dividend 13495 and add 0 to the quotient
\begin{array}{l}\phantom{11919)}000\phantom{7}\\11919\overline{)13495}\\\end{array}
Use the 4^{th} digit 9 from dividend 13495
\begin{array}{l}\phantom{11919)}0000\phantom{8}\\11919\overline{)13495}\\\end{array}
Since 1349 is less than 11919, use the next digit 5 from dividend 13495 and add 0 to the quotient
\begin{array}{l}\phantom{11919)}0000\phantom{9}\\11919\overline{)13495}\\\end{array}
Use the 5^{th} digit 5 from dividend 13495
\begin{array}{l}\phantom{11919)}00001\phantom{10}\\11919\overline{)13495}\\\phantom{11919)}\underline{\phantom{}11919\phantom{}}\\\phantom{11919)9}1576\\\end{array}
Find closest multiple of 11919 to 13495. We see that 1 \times 11919 = 11919 is the nearest. Now subtract 11919 from 13495 to get reminder 1576. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1576
Since 1576 is less than 11919, stop the division. The reminder is 1576. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}