Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{13}{4}x^{2}-4x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{13}{4}\left(-5\right)}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{4} for a, -4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{13}{4}\left(-5\right)}}{2\times \frac{13}{4}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-13\left(-5\right)}}{2\times \frac{13}{4}}
Multiply -4 times \frac{13}{4}.
x=\frac{-\left(-4\right)±\sqrt{16+65}}{2\times \frac{13}{4}}
Multiply -13 times -5.
x=\frac{-\left(-4\right)±\sqrt{81}}{2\times \frac{13}{4}}
Add 16 to 65.
x=\frac{-\left(-4\right)±9}{2\times \frac{13}{4}}
Take the square root of 81.
x=\frac{4±9}{2\times \frac{13}{4}}
The opposite of -4 is 4.
x=\frac{4±9}{\frac{13}{2}}
Multiply 2 times \frac{13}{4}.
x=\frac{13}{\frac{13}{2}}
Now solve the equation x=\frac{4±9}{\frac{13}{2}} when ± is plus. Add 4 to 9.
x=2
Divide 13 by \frac{13}{2} by multiplying 13 by the reciprocal of \frac{13}{2}.
x=-\frac{5}{\frac{13}{2}}
Now solve the equation x=\frac{4±9}{\frac{13}{2}} when ± is minus. Subtract 9 from 4.
x=-\frac{10}{13}
Divide -5 by \frac{13}{2} by multiplying -5 by the reciprocal of \frac{13}{2}.
x=2 x=-\frac{10}{13}
The equation is now solved.
\frac{13}{4}x^{2}-4x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{13}{4}x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
\frac{13}{4}x^{2}-4x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
\frac{13}{4}x^{2}-4x=5
Subtract -5 from 0.
\frac{\frac{13}{4}x^{2}-4x}{\frac{13}{4}}=\frac{5}{\frac{13}{4}}
Divide both sides of the equation by \frac{13}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4}{\frac{13}{4}}\right)x=\frac{5}{\frac{13}{4}}
Dividing by \frac{13}{4} undoes the multiplication by \frac{13}{4}.
x^{2}-\frac{16}{13}x=\frac{5}{\frac{13}{4}}
Divide -4 by \frac{13}{4} by multiplying -4 by the reciprocal of \frac{13}{4}.
x^{2}-\frac{16}{13}x=\frac{20}{13}
Divide 5 by \frac{13}{4} by multiplying 5 by the reciprocal of \frac{13}{4}.
x^{2}-\frac{16}{13}x+\left(-\frac{8}{13}\right)^{2}=\frac{20}{13}+\left(-\frac{8}{13}\right)^{2}
Divide -\frac{16}{13}, the coefficient of the x term, by 2 to get -\frac{8}{13}. Then add the square of -\frac{8}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{13}x+\frac{64}{169}=\frac{20}{13}+\frac{64}{169}
Square -\frac{8}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{13}x+\frac{64}{169}=\frac{324}{169}
Add \frac{20}{13} to \frac{64}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{13}\right)^{2}=\frac{324}{169}
Factor x^{2}-\frac{16}{13}x+\frac{64}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{13}\right)^{2}}=\sqrt{\frac{324}{169}}
Take the square root of both sides of the equation.
x-\frac{8}{13}=\frac{18}{13} x-\frac{8}{13}=-\frac{18}{13}
Simplify.
x=2 x=-\frac{10}{13}
Add \frac{8}{13} to both sides of the equation.