Evaluate
\frac{13}{12}\approx 1.083333333
Factor
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)13}\\\end{array}
Use the 1^{st} digit 1 from dividend 13
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)13}\\\end{array}
Since 1 is less than 12, use the next digit 3 from dividend 13 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)13}\\\end{array}
Use the 2^{nd} digit 3 from dividend 13
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)13}\\\phantom{12)}\underline{\phantom{}12\phantom{}}\\\phantom{12)9}1\\\end{array}
Find closest multiple of 12 to 13. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 13 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 12, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}