Evaluate
\frac{616}{9}\approx 68.444444444
Factor
\frac{2 ^ {3} \cdot 7 \cdot 11}{3 ^ {2}} = 68\frac{4}{9} = 68.44444444444444
Share
Copied to clipboard
\frac{\frac{108+1}{9}-\frac{10\times 5+2}{5}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Multiply 12 and 9 to get 108.
\frac{\frac{109}{9}-\frac{10\times 5+2}{5}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Add 108 and 1 to get 109.
\frac{\frac{109}{9}-\frac{50+2}{5}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Multiply 10 and 5 to get 50.
\frac{\frac{109}{9}-\frac{52}{5}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Add 50 and 2 to get 52.
\frac{\frac{545}{45}-\frac{468}{45}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Least common multiple of 9 and 5 is 45. Convert \frac{109}{9} and \frac{52}{5} to fractions with denominator 45.
\frac{\frac{545-468}{45}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Since \frac{545}{45} and \frac{468}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{77}{45}}{\frac{38\times 2+1}{2}}+\frac{2\times 5+9}{5}\times 18
Subtract 468 from 545 to get 77.
\frac{\frac{77}{45}}{\frac{76+1}{2}}+\frac{2\times 5+9}{5}\times 18
Multiply 38 and 2 to get 76.
\frac{\frac{77}{45}}{\frac{77}{2}}+\frac{2\times 5+9}{5}\times 18
Add 76 and 1 to get 77.
\frac{77}{45}\times \frac{2}{77}+\frac{2\times 5+9}{5}\times 18
Divide \frac{77}{45} by \frac{77}{2} by multiplying \frac{77}{45} by the reciprocal of \frac{77}{2}.
\frac{77\times 2}{45\times 77}+\frac{2\times 5+9}{5}\times 18
Multiply \frac{77}{45} times \frac{2}{77} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{45}+\frac{2\times 5+9}{5}\times 18
Cancel out 77 in both numerator and denominator.
\frac{2}{45}+\frac{10+9}{5}\times 18
Multiply 2 and 5 to get 10.
\frac{2}{45}+\frac{19}{5}\times 18
Add 10 and 9 to get 19.
\frac{2}{45}+\frac{19\times 18}{5}
Express \frac{19}{5}\times 18 as a single fraction.
\frac{2}{45}+\frac{342}{5}
Multiply 19 and 18 to get 342.
\frac{2}{45}+\frac{3078}{45}
Least common multiple of 45 and 5 is 45. Convert \frac{2}{45} and \frac{342}{5} to fractions with denominator 45.
\frac{2+3078}{45}
Since \frac{2}{45} and \frac{3078}{45} have the same denominator, add them by adding their numerators.
\frac{3080}{45}
Add 2 and 3078 to get 3080.
\frac{616}{9}
Reduce the fraction \frac{3080}{45} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}