Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\left(2-\sqrt{13}\right)}{\left(2+\sqrt{13}\right)\left(2-\sqrt{13}\right)}
Rationalize the denominator of \frac{12}{2+\sqrt{13}} by multiplying numerator and denominator by 2-\sqrt{13}.
\frac{12\left(2-\sqrt{13}\right)}{2^{2}-\left(\sqrt{13}\right)^{2}}
Consider \left(2+\sqrt{13}\right)\left(2-\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(2-\sqrt{13}\right)}{4-13}
Square 2. Square \sqrt{13}.
\frac{12\left(2-\sqrt{13}\right)}{-9}
Subtract 13 from 4 to get -9.
-\frac{4}{3}\left(2-\sqrt{13}\right)
Divide 12\left(2-\sqrt{13}\right) by -9 to get -\frac{4}{3}\left(2-\sqrt{13}\right).
-\frac{4}{3}\times 2-\frac{4}{3}\left(-1\right)\sqrt{13}
Use the distributive property to multiply -\frac{4}{3} by 2-\sqrt{13}.
\frac{-4\times 2}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Express -\frac{4}{3}\times 2 as a single fraction.
\frac{-8}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Multiply -4 and 2 to get -8.
-\frac{8}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{8}{3}+\frac{4}{3}\sqrt{13}
Multiply -\frac{4}{3} and -1 to get \frac{4}{3}.