Evaluate
\frac{4\left(\sqrt{13}-2\right)}{3}\approx 2.140735034
Share
Copied to clipboard
\frac{12\left(2-\sqrt{13}\right)}{\left(2+\sqrt{13}\right)\left(2-\sqrt{13}\right)}
Rationalize the denominator of \frac{12}{2+\sqrt{13}} by multiplying numerator and denominator by 2-\sqrt{13}.
\frac{12\left(2-\sqrt{13}\right)}{2^{2}-\left(\sqrt{13}\right)^{2}}
Consider \left(2+\sqrt{13}\right)\left(2-\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(2-\sqrt{13}\right)}{4-13}
Square 2. Square \sqrt{13}.
\frac{12\left(2-\sqrt{13}\right)}{-9}
Subtract 13 from 4 to get -9.
-\frac{4}{3}\left(2-\sqrt{13}\right)
Divide 12\left(2-\sqrt{13}\right) by -9 to get -\frac{4}{3}\left(2-\sqrt{13}\right).
-\frac{4}{3}\times 2-\frac{4}{3}\left(-1\right)\sqrt{13}
Use the distributive property to multiply -\frac{4}{3} by 2-\sqrt{13}.
\frac{-4\times 2}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Express -\frac{4}{3}\times 2 as a single fraction.
\frac{-8}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Multiply -4 and 2 to get -8.
-\frac{8}{3}-\frac{4}{3}\left(-1\right)\sqrt{13}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
-\frac{8}{3}+\frac{4}{3}\sqrt{13}
Multiply -\frac{4}{3} and -1 to get \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}