Evaluate
\frac{2976}{337}\approx 8.830860534
Factor
\frac{3 \cdot 31 \cdot 2 ^ {5}}{337} = 8\frac{280}{337} = 8.830860534124628
Share
Copied to clipboard
\frac{12}{1+\left(\frac{120}{31}-1\right)\times \frac{30-10}{80}\times 0.5}
Expand \frac{12}{3.1} by multiplying both numerator and the denominator by 10.
\frac{12}{1+\left(\frac{120}{31}-\frac{31}{31}\right)\times \frac{30-10}{80}\times 0.5}
Convert 1 to fraction \frac{31}{31}.
\frac{12}{1+\frac{120-31}{31}\times \frac{30-10}{80}\times 0.5}
Since \frac{120}{31} and \frac{31}{31} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{1+\frac{89}{31}\times \frac{30-10}{80}\times 0.5}
Subtract 31 from 120 to get 89.
\frac{12}{1+\frac{89}{31}\times \frac{20}{80}\times 0.5}
Subtract 10 from 30 to get 20.
\frac{12}{1+\frac{89}{31}\times \frac{1}{4}\times 0.5}
Reduce the fraction \frac{20}{80} to lowest terms by extracting and canceling out 20.
\frac{12}{1+\frac{89\times 1}{31\times 4}\times 0.5}
Multiply \frac{89}{31} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{1+\frac{89}{124}\times 0.5}
Do the multiplications in the fraction \frac{89\times 1}{31\times 4}.
\frac{12}{1+\frac{89}{124}\times \frac{1}{2}}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{12}{1+\frac{89\times 1}{124\times 2}}
Multiply \frac{89}{124} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{1+\frac{89}{248}}
Do the multiplications in the fraction \frac{89\times 1}{124\times 2}.
\frac{12}{\frac{248}{248}+\frac{89}{248}}
Convert 1 to fraction \frac{248}{248}.
\frac{12}{\frac{248+89}{248}}
Since \frac{248}{248} and \frac{89}{248} have the same denominator, add them by adding their numerators.
\frac{12}{\frac{337}{248}}
Add 248 and 89 to get 337.
12\times \frac{248}{337}
Divide 12 by \frac{337}{248} by multiplying 12 by the reciprocal of \frac{337}{248}.
\frac{12\times 248}{337}
Express 12\times \frac{248}{337} as a single fraction.
\frac{2976}{337}
Multiply 12 and 248 to get 2976.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}