Evaluate
\frac{13}{5}=2.6
Factor
\frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
\begin{array}{l}\phantom{455)}\phantom{1}\\455\overline{)1183}\\\end{array}
Use the 1^{st} digit 1 from dividend 1183
\begin{array}{l}\phantom{455)}0\phantom{2}\\455\overline{)1183}\\\end{array}
Since 1 is less than 455, use the next digit 1 from dividend 1183 and add 0 to the quotient
\begin{array}{l}\phantom{455)}0\phantom{3}\\455\overline{)1183}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1183
\begin{array}{l}\phantom{455)}00\phantom{4}\\455\overline{)1183}\\\end{array}
Since 11 is less than 455, use the next digit 8 from dividend 1183 and add 0 to the quotient
\begin{array}{l}\phantom{455)}00\phantom{5}\\455\overline{)1183}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1183
\begin{array}{l}\phantom{455)}000\phantom{6}\\455\overline{)1183}\\\end{array}
Since 118 is less than 455, use the next digit 3 from dividend 1183 and add 0 to the quotient
\begin{array}{l}\phantom{455)}000\phantom{7}\\455\overline{)1183}\\\end{array}
Use the 4^{th} digit 3 from dividend 1183
\begin{array}{l}\phantom{455)}0002\phantom{8}\\455\overline{)1183}\\\phantom{455)}\underline{\phantom{9}910\phantom{}}\\\phantom{455)9}273\\\end{array}
Find closest multiple of 455 to 1183. We see that 2 \times 455 = 910 is the nearest. Now subtract 910 from 1183 to get reminder 273. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }273
Since 273 is less than 455, stop the division. The reminder is 273. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}