Evaluate
\frac{113}{60}\approx 1.883333333
Factor
\frac{113}{2 ^ {2} \cdot 3 \cdot 5} = 1\frac{53}{60} = 1.8833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)113}\\\end{array}
Use the 1^{st} digit 1 from dividend 113
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)113}\\\end{array}
Since 1 is less than 60, use the next digit 1 from dividend 113 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)113}\\\end{array}
Use the 2^{nd} digit 1 from dividend 113
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)113}\\\end{array}
Since 11 is less than 60, use the next digit 3 from dividend 113 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)113}\\\end{array}
Use the 3^{rd} digit 3 from dividend 113
\begin{array}{l}\phantom{60)}001\phantom{6}\\60\overline{)113}\\\phantom{60)}\underline{\phantom{9}60\phantom{}}\\\phantom{60)9}53\\\end{array}
Find closest multiple of 60 to 113. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 113 to get reminder 53. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }53
Since 53 is less than 60, stop the division. The reminder is 53. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}