Evaluate
\frac{561}{545}\approx 1.029357798
Factor
\frac{3 \cdot 11 \cdot 17}{5 \cdot 109} = 1\frac{16}{545} = 1.0293577981651376
Share
Copied to clipboard
\begin{array}{l}\phantom{1090)}\phantom{1}\\1090\overline{)1122}\\\end{array}
Use the 1^{st} digit 1 from dividend 1122
\begin{array}{l}\phantom{1090)}0\phantom{2}\\1090\overline{)1122}\\\end{array}
Since 1 is less than 1090, use the next digit 1 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{1090)}0\phantom{3}\\1090\overline{)1122}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1122
\begin{array}{l}\phantom{1090)}00\phantom{4}\\1090\overline{)1122}\\\end{array}
Since 11 is less than 1090, use the next digit 2 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{1090)}00\phantom{5}\\1090\overline{)1122}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1122
\begin{array}{l}\phantom{1090)}000\phantom{6}\\1090\overline{)1122}\\\end{array}
Since 112 is less than 1090, use the next digit 2 from dividend 1122 and add 0 to the quotient
\begin{array}{l}\phantom{1090)}000\phantom{7}\\1090\overline{)1122}\\\end{array}
Use the 4^{th} digit 2 from dividend 1122
\begin{array}{l}\phantom{1090)}0001\phantom{8}\\1090\overline{)1122}\\\phantom{1090)}\underline{\phantom{}1090\phantom{}}\\\phantom{1090)99}32\\\end{array}
Find closest multiple of 1090 to 1122. We see that 1 \times 1090 = 1090 is the nearest. Now subtract 1090 from 1122 to get reminder 32. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }32
Since 32 is less than 1090, stop the division. The reminder is 32. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}