Solve for y
y = \frac{5 \sqrt{17} - 7}{8} \approx 1.701941016
y=\frac{-5\sqrt{17}-7}{8}\approx -3.451941016
Graph
Share
Copied to clipboard
\left(11-\left(-4y\right)-4\right)\times 6y=141
Multiply both sides of the equation by 3.
\left(11+4y-4\right)\times 6y=141
The opposite of -4y is 4y.
\left(7+4y\right)\times 6y=141
Subtract 4 from 11 to get 7.
\left(42+24y\right)y=141
Use the distributive property to multiply 7+4y by 6.
42y+24y^{2}=141
Use the distributive property to multiply 42+24y by y.
42y+24y^{2}-141=0
Subtract 141 from both sides.
24y^{2}+42y-141=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-42±\sqrt{42^{2}-4\times 24\left(-141\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 42 for b, and -141 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-42±\sqrt{1764-4\times 24\left(-141\right)}}{2\times 24}
Square 42.
y=\frac{-42±\sqrt{1764-96\left(-141\right)}}{2\times 24}
Multiply -4 times 24.
y=\frac{-42±\sqrt{1764+13536}}{2\times 24}
Multiply -96 times -141.
y=\frac{-42±\sqrt{15300}}{2\times 24}
Add 1764 to 13536.
y=\frac{-42±30\sqrt{17}}{2\times 24}
Take the square root of 15300.
y=\frac{-42±30\sqrt{17}}{48}
Multiply 2 times 24.
y=\frac{30\sqrt{17}-42}{48}
Now solve the equation y=\frac{-42±30\sqrt{17}}{48} when ± is plus. Add -42 to 30\sqrt{17}.
y=\frac{5\sqrt{17}-7}{8}
Divide -42+30\sqrt{17} by 48.
y=\frac{-30\sqrt{17}-42}{48}
Now solve the equation y=\frac{-42±30\sqrt{17}}{48} when ± is minus. Subtract 30\sqrt{17} from -42.
y=\frac{-5\sqrt{17}-7}{8}
Divide -42-30\sqrt{17} by 48.
y=\frac{5\sqrt{17}-7}{8} y=\frac{-5\sqrt{17}-7}{8}
The equation is now solved.
\left(11-\left(-4y\right)-4\right)\times 6y=141
Multiply both sides of the equation by 3.
\left(11+4y-4\right)\times 6y=141
The opposite of -4y is 4y.
\left(7+4y\right)\times 6y=141
Subtract 4 from 11 to get 7.
\left(42+24y\right)y=141
Use the distributive property to multiply 7+4y by 6.
42y+24y^{2}=141
Use the distributive property to multiply 42+24y by y.
24y^{2}+42y=141
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{24y^{2}+42y}{24}=\frac{141}{24}
Divide both sides by 24.
y^{2}+\frac{42}{24}y=\frac{141}{24}
Dividing by 24 undoes the multiplication by 24.
y^{2}+\frac{7}{4}y=\frac{141}{24}
Reduce the fraction \frac{42}{24} to lowest terms by extracting and canceling out 6.
y^{2}+\frac{7}{4}y=\frac{47}{8}
Reduce the fraction \frac{141}{24} to lowest terms by extracting and canceling out 3.
y^{2}+\frac{7}{4}y+\left(\frac{7}{8}\right)^{2}=\frac{47}{8}+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{7}{4}y+\frac{49}{64}=\frac{47}{8}+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{7}{4}y+\frac{49}{64}=\frac{425}{64}
Add \frac{47}{8} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{7}{8}\right)^{2}=\frac{425}{64}
Factor y^{2}+\frac{7}{4}y+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{7}{8}\right)^{2}}=\sqrt{\frac{425}{64}}
Take the square root of both sides of the equation.
y+\frac{7}{8}=\frac{5\sqrt{17}}{8} y+\frac{7}{8}=-\frac{5\sqrt{17}}{8}
Simplify.
y=\frac{5\sqrt{17}-7}{8} y=\frac{-5\sqrt{17}-7}{8}
Subtract \frac{7}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}