Evaluate
\frac{67}{15}\approx 4.466666667
Factor
\frac{67}{3 \cdot 5} = 4\frac{7}{15} = 4.466666666666667
Share
Copied to clipboard
\frac{11}{2}\times \frac{4}{15}+\frac{9}{4}+\frac{3}{4}
Divide \frac{11}{2} by \frac{15}{4} by multiplying \frac{11}{2} by the reciprocal of \frac{15}{4}.
\frac{11\times 4}{2\times 15}+\frac{9}{4}+\frac{3}{4}
Multiply \frac{11}{2} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{44}{30}+\frac{9}{4}+\frac{3}{4}
Do the multiplications in the fraction \frac{11\times 4}{2\times 15}.
\frac{22}{15}+\frac{9}{4}+\frac{3}{4}
Reduce the fraction \frac{44}{30} to lowest terms by extracting and canceling out 2.
\frac{88}{60}+\frac{135}{60}+\frac{3}{4}
Least common multiple of 15 and 4 is 60. Convert \frac{22}{15} and \frac{9}{4} to fractions with denominator 60.
\frac{88+135}{60}+\frac{3}{4}
Since \frac{88}{60} and \frac{135}{60} have the same denominator, add them by adding their numerators.
\frac{223}{60}+\frac{3}{4}
Add 88 and 135 to get 223.
\frac{223}{60}+\frac{45}{60}
Least common multiple of 60 and 4 is 60. Convert \frac{223}{60} and \frac{3}{4} to fractions with denominator 60.
\frac{223+45}{60}
Since \frac{223}{60} and \frac{45}{60} have the same denominator, add them by adding their numerators.
\frac{268}{60}
Add 223 and 45 to get 268.
\frac{67}{15}
Reduce the fraction \frac{268}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}