Evaluate
\frac{17}{2}=8.5
Factor
\frac{17}{2} = 8\frac{1}{2} = 8.5
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)102}\\\end{array}
Use the 1^{st} digit 1 from dividend 102
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)102}\\\end{array}
Since 1 is less than 12, use the next digit 0 from dividend 102 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)102}\\\end{array}
Use the 2^{nd} digit 0 from dividend 102
\begin{array}{l}\phantom{12)}00\phantom{4}\\12\overline{)102}\\\end{array}
Since 10 is less than 12, use the next digit 2 from dividend 102 and add 0 to the quotient
\begin{array}{l}\phantom{12)}00\phantom{5}\\12\overline{)102}\\\end{array}
Use the 3^{rd} digit 2 from dividend 102
\begin{array}{l}\phantom{12)}008\phantom{6}\\12\overline{)102}\\\phantom{12)}\underline{\phantom{9}96\phantom{}}\\\phantom{12)99}6\\\end{array}
Find closest multiple of 12 to 102. We see that 8 \times 12 = 96 is the nearest. Now subtract 96 from 102 to get reminder 6. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }6
Since 6 is less than 12, stop the division. The reminder is 6. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}