Evaluate
\frac{33667}{367}\approx 91.735694823
Factor
\frac{131 \cdot 257}{367} = 91\frac{270}{367} = 91.73569482288828
Share
Copied to clipboard
\begin{array}{l}\phantom{1101)}\phantom{1}\\1101\overline{)101001}\\\end{array}
Use the 1^{st} digit 1 from dividend 101001
\begin{array}{l}\phantom{1101)}0\phantom{2}\\1101\overline{)101001}\\\end{array}
Since 1 is less than 1101, use the next digit 0 from dividend 101001 and add 0 to the quotient
\begin{array}{l}\phantom{1101)}0\phantom{3}\\1101\overline{)101001}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101001
\begin{array}{l}\phantom{1101)}00\phantom{4}\\1101\overline{)101001}\\\end{array}
Since 10 is less than 1101, use the next digit 1 from dividend 101001 and add 0 to the quotient
\begin{array}{l}\phantom{1101)}00\phantom{5}\\1101\overline{)101001}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101001
\begin{array}{l}\phantom{1101)}000\phantom{6}\\1101\overline{)101001}\\\end{array}
Since 101 is less than 1101, use the next digit 0 from dividend 101001 and add 0 to the quotient
\begin{array}{l}\phantom{1101)}000\phantom{7}\\1101\overline{)101001}\\\end{array}
Use the 4^{th} digit 0 from dividend 101001
\begin{array}{l}\phantom{1101)}0000\phantom{8}\\1101\overline{)101001}\\\end{array}
Since 1010 is less than 1101, use the next digit 0 from dividend 101001 and add 0 to the quotient
\begin{array}{l}\phantom{1101)}0000\phantom{9}\\1101\overline{)101001}\\\end{array}
Use the 5^{th} digit 0 from dividend 101001
\begin{array}{l}\phantom{1101)}00009\phantom{10}\\1101\overline{)101001}\\\phantom{1101)}\underline{\phantom{9}9909\phantom{9}}\\\phantom{1101)99}191\\\end{array}
Find closest multiple of 1101 to 10100. We see that 9 \times 1101 = 9909 is the nearest. Now subtract 9909 from 10100 to get reminder 191. Add 9 to quotient.
\begin{array}{l}\phantom{1101)}00009\phantom{11}\\1101\overline{)101001}\\\phantom{1101)}\underline{\phantom{9}9909\phantom{9}}\\\phantom{1101)99}1911\\\end{array}
Use the 6^{th} digit 1 from dividend 101001
\begin{array}{l}\phantom{1101)}000091\phantom{12}\\1101\overline{)101001}\\\phantom{1101)}\underline{\phantom{9}9909\phantom{9}}\\\phantom{1101)99}1911\\\phantom{1101)}\underline{\phantom{99}1101\phantom{}}\\\phantom{1101)999}810\\\end{array}
Find closest multiple of 1101 to 1911. We see that 1 \times 1101 = 1101 is the nearest. Now subtract 1101 from 1911 to get reminder 810. Add 1 to quotient.
\text{Quotient: }91 \text{Reminder: }810
Since 810 is less than 1101, stop the division. The reminder is 810. The topmost line 000091 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}