Evaluate
\frac{250000}{11}\approx 22727.272727273
Factor
\frac{2 ^ {4} \cdot 5 ^ {6}}{11} = 22727\frac{3}{11} = 22727.272727272728
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)1000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1000000
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)1000000}\\\end{array}
Since 1 is less than 44, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)1000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}00\phantom{4}\\44\overline{)1000000}\\\end{array}
Since 10 is less than 44, use the next digit 0 from dividend 1000000 and add 0 to the quotient
\begin{array}{l}\phantom{44)}00\phantom{5}\\44\overline{)1000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}002\phantom{6}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}12\\\end{array}
Find closest multiple of 44 to 100. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 100 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{44)}002\phantom{7}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\end{array}
Use the 4^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}0022\phantom{8}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}32\\\end{array}
Find closest multiple of 44 to 120. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 120 to get reminder 32. Add 2 to quotient.
\begin{array}{l}\phantom{44)}0022\phantom{9}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\end{array}
Use the 5^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}00227\phantom{10}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\phantom{44)}\underline{\phantom{99}308\phantom{99}}\\\phantom{44)999}12\\\end{array}
Find closest multiple of 44 to 320. We see that 7 \times 44 = 308 is the nearest. Now subtract 308 from 320 to get reminder 12. Add 7 to quotient.
\begin{array}{l}\phantom{44)}00227\phantom{11}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\phantom{44)}\underline{\phantom{99}308\phantom{99}}\\\phantom{44)999}120\\\end{array}
Use the 6^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}002272\phantom{12}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\phantom{44)}\underline{\phantom{99}308\phantom{99}}\\\phantom{44)999}120\\\phantom{44)}\underline{\phantom{9999}88\phantom{9}}\\\phantom{44)9999}32\\\end{array}
Find closest multiple of 44 to 120. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 120 to get reminder 32. Add 2 to quotient.
\begin{array}{l}\phantom{44)}002272\phantom{13}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\phantom{44)}\underline{\phantom{99}308\phantom{99}}\\\phantom{44)999}120\\\phantom{44)}\underline{\phantom{9999}88\phantom{9}}\\\phantom{44)9999}320\\\end{array}
Use the 7^{th} digit 0 from dividend 1000000
\begin{array}{l}\phantom{44)}0022727\phantom{14}\\44\overline{)1000000}\\\phantom{44)}\underline{\phantom{9}88\phantom{9999}}\\\phantom{44)9}120\\\phantom{44)}\underline{\phantom{99}88\phantom{999}}\\\phantom{44)99}320\\\phantom{44)}\underline{\phantom{99}308\phantom{99}}\\\phantom{44)999}120\\\phantom{44)}\underline{\phantom{9999}88\phantom{9}}\\\phantom{44)9999}320\\\phantom{44)}\underline{\phantom{9999}308\phantom{}}\\\phantom{44)99999}12\\\end{array}
Find closest multiple of 44 to 320. We see that 7 \times 44 = 308 is the nearest. Now subtract 308 from 320 to get reminder 12. Add 7 to quotient.
\text{Quotient: }22727 \text{Reminder: }12
Since 12 is less than 44, stop the division. The reminder is 12. The topmost line 0022727 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22727.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}