Verify
false
Share
Copied to clipboard
\frac{100}{1+12\times \frac{1}{1000000}}-\frac{100}{1+22\times 10^{-6}}=5
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{100}{1+\frac{3}{250000}}-\frac{100}{1+22\times 10^{-6}}=5
Multiply 12 and \frac{1}{1000000} to get \frac{3}{250000}.
\frac{100}{\frac{250003}{250000}}-\frac{100}{1+22\times 10^{-6}}=5
Add 1 and \frac{3}{250000} to get \frac{250003}{250000}.
100\times \frac{250000}{250003}-\frac{100}{1+22\times 10^{-6}}=5
Divide 100 by \frac{250003}{250000} by multiplying 100 by the reciprocal of \frac{250003}{250000}.
\frac{25000000}{250003}-\frac{100}{1+22\times 10^{-6}}=5
Multiply 100 and \frac{250000}{250003} to get \frac{25000000}{250003}.
\frac{25000000}{250003}-\frac{100}{1+22\times \frac{1}{1000000}}=5
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{25000000}{250003}-\frac{100}{1+\frac{11}{500000}}=5
Multiply 22 and \frac{1}{1000000} to get \frac{11}{500000}.
\frac{25000000}{250003}-\frac{100}{\frac{500011}{500000}}=5
Add 1 and \frac{11}{500000} to get \frac{500011}{500000}.
\frac{25000000}{250003}-100\times \frac{500000}{500011}=5
Divide 100 by \frac{500011}{500000} by multiplying 100 by the reciprocal of \frac{500011}{500000}.
\frac{25000000}{250003}-\frac{50000000}{500011}=5
Multiply 100 and \frac{500000}{500011} to get \frac{50000000}{500011}.
\frac{125000000}{125004250033}=5
Subtract \frac{50000000}{500011} from \frac{25000000}{250003} to get \frac{125000000}{125004250033}.
\frac{125000000}{125004250033}=\frac{625021250165}{125004250033}
Convert 5 to fraction \frac{625021250165}{125004250033}.
\text{false}
Compare \frac{125000000}{125004250033} and \frac{625021250165}{125004250033}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}