Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{100-10\times 20}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 10 to get 100.
\frac{100-200}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 20 to get 200.
\frac{-100}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Subtract 200 from 100 to get -100.
\frac{-100}{\sqrt{200-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 20 to get 200.
\frac{-100}{\sqrt{200-100}\sqrt{10\times 68-20^{2}}}
Calculate 10 to the power of 2 and get 100.
\frac{-100}{\sqrt{100}\sqrt{10\times 68-20^{2}}}
Subtract 100 from 200 to get 100.
\frac{-100}{10\sqrt{10\times 68-20^{2}}}
Calculate the square root of 100 and get 10.
\frac{-100}{10\sqrt{680-20^{2}}}
Multiply 10 and 68 to get 680.
\frac{-100}{10\sqrt{680-400}}
Calculate 20 to the power of 2 and get 400.
\frac{-100}{10\sqrt{280}}
Subtract 400 from 680 to get 280.
\frac{-100}{10\times 2\sqrt{70}}
Factor 280=2^{2}\times 70. Rewrite the square root of the product \sqrt{2^{2}\times 70} as the product of square roots \sqrt{2^{2}}\sqrt{70}. Take the square root of 2^{2}.
\frac{-100}{20\sqrt{70}}
Multiply 10 and 2 to get 20.
\frac{-100\sqrt{70}}{20\left(\sqrt{70}\right)^{2}}
Rationalize the denominator of \frac{-100}{20\sqrt{70}} by multiplying numerator and denominator by \sqrt{70}.
\frac{-100\sqrt{70}}{20\times 70}
The square of \sqrt{70} is 70.
\frac{-\sqrt{70}}{14}
Cancel out 5\times 20 in both numerator and denominator.