Evaluate
-\frac{\sqrt{70}}{14}\approx -0.597614305
Share
Copied to clipboard
\frac{100-10\times 20}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 10 to get 100.
\frac{100-200}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 20 to get 200.
\frac{-100}{\sqrt{10\times 20-10^{2}}\sqrt{10\times 68-20^{2}}}
Subtract 200 from 100 to get -100.
\frac{-100}{\sqrt{200-10^{2}}\sqrt{10\times 68-20^{2}}}
Multiply 10 and 20 to get 200.
\frac{-100}{\sqrt{200-100}\sqrt{10\times 68-20^{2}}}
Calculate 10 to the power of 2 and get 100.
\frac{-100}{\sqrt{100}\sqrt{10\times 68-20^{2}}}
Subtract 100 from 200 to get 100.
\frac{-100}{10\sqrt{10\times 68-20^{2}}}
Calculate the square root of 100 and get 10.
\frac{-100}{10\sqrt{680-20^{2}}}
Multiply 10 and 68 to get 680.
\frac{-100}{10\sqrt{680-400}}
Calculate 20 to the power of 2 and get 400.
\frac{-100}{10\sqrt{280}}
Subtract 400 from 680 to get 280.
\frac{-100}{10\times 2\sqrt{70}}
Factor 280=2^{2}\times 70. Rewrite the square root of the product \sqrt{2^{2}\times 70} as the product of square roots \sqrt{2^{2}}\sqrt{70}. Take the square root of 2^{2}.
\frac{-100}{20\sqrt{70}}
Multiply 10 and 2 to get 20.
\frac{-100\sqrt{70}}{20\left(\sqrt{70}\right)^{2}}
Rationalize the denominator of \frac{-100}{20\sqrt{70}} by multiplying numerator and denominator by \sqrt{70}.
\frac{-100\sqrt{70}}{20\times 70}
The square of \sqrt{70} is 70.
\frac{-\sqrt{70}}{14}
Cancel out 5\times 20 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}