Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
3\times 10+3\left(x+3\right)\times \frac{10}{3}=18\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+3\right), the least common multiple of x+3,3.
30+3\left(x+3\right)\times \frac{10}{3}=18\left(x+3\right)
Multiply 3 and 10 to get 30.
30+10\left(x+3\right)=18\left(x+3\right)
Multiply 3 and \frac{10}{3} to get 10.
30+10x+30=18\left(x+3\right)
Use the distributive property to multiply 10 by x+3.
60+10x=18\left(x+3\right)
Add 30 and 30 to get 60.
60+10x=18x+54
Use the distributive property to multiply 18 by x+3.
60+10x-18x=54
Subtract 18x from both sides.
60-8x=54
Combine 10x and -18x to get -8x.
-8x=54-60
Subtract 60 from both sides.
-8x=-6
Subtract 60 from 54 to get -6.
x=\frac{-6}{-8}
Divide both sides by -8.
x=\frac{3}{4}
Reduce the fraction \frac{-6}{-8} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}