Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10}{9}x^{2}-6x+9=13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{10}{9}x^{2}-6x+9-13=13-13
Subtract 13 from both sides of the equation.
\frac{10}{9}x^{2}-6x+9-13=0
Subtracting 13 from itself leaves 0.
\frac{10}{9}x^{2}-6x-4=0
Subtract 13 from 9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times \frac{10}{9}\left(-4\right)}}{2\times \frac{10}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{9} for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times \frac{10}{9}\left(-4\right)}}{2\times \frac{10}{9}}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-\frac{40}{9}\left(-4\right)}}{2\times \frac{10}{9}}
Multiply -4 times \frac{10}{9}.
x=\frac{-\left(-6\right)±\sqrt{36+\frac{160}{9}}}{2\times \frac{10}{9}}
Multiply -\frac{40}{9} times -4.
x=\frac{-\left(-6\right)±\sqrt{\frac{484}{9}}}{2\times \frac{10}{9}}
Add 36 to \frac{160}{9}.
x=\frac{-\left(-6\right)±\frac{22}{3}}{2\times \frac{10}{9}}
Take the square root of \frac{484}{9}.
x=\frac{6±\frac{22}{3}}{2\times \frac{10}{9}}
The opposite of -6 is 6.
x=\frac{6±\frac{22}{3}}{\frac{20}{9}}
Multiply 2 times \frac{10}{9}.
x=\frac{\frac{40}{3}}{\frac{20}{9}}
Now solve the equation x=\frac{6±\frac{22}{3}}{\frac{20}{9}} when ± is plus. Add 6 to \frac{22}{3}.
x=6
Divide \frac{40}{3} by \frac{20}{9} by multiplying \frac{40}{3} by the reciprocal of \frac{20}{9}.
x=-\frac{\frac{4}{3}}{\frac{20}{9}}
Now solve the equation x=\frac{6±\frac{22}{3}}{\frac{20}{9}} when ± is minus. Subtract \frac{22}{3} from 6.
x=-\frac{3}{5}
Divide -\frac{4}{3} by \frac{20}{9} by multiplying -\frac{4}{3} by the reciprocal of \frac{20}{9}.
x=6 x=-\frac{3}{5}
The equation is now solved.
\frac{10}{9}x^{2}-6x+9=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10}{9}x^{2}-6x+9-9=13-9
Subtract 9 from both sides of the equation.
\frac{10}{9}x^{2}-6x=13-9
Subtracting 9 from itself leaves 0.
\frac{10}{9}x^{2}-6x=4
Subtract 9 from 13.
\frac{\frac{10}{9}x^{2}-6x}{\frac{10}{9}}=\frac{4}{\frac{10}{9}}
Divide both sides of the equation by \frac{10}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{6}{\frac{10}{9}}\right)x=\frac{4}{\frac{10}{9}}
Dividing by \frac{10}{9} undoes the multiplication by \frac{10}{9}.
x^{2}-\frac{27}{5}x=\frac{4}{\frac{10}{9}}
Divide -6 by \frac{10}{9} by multiplying -6 by the reciprocal of \frac{10}{9}.
x^{2}-\frac{27}{5}x=\frac{18}{5}
Divide 4 by \frac{10}{9} by multiplying 4 by the reciprocal of \frac{10}{9}.
x^{2}-\frac{27}{5}x+\left(-\frac{27}{10}\right)^{2}=\frac{18}{5}+\left(-\frac{27}{10}\right)^{2}
Divide -\frac{27}{5}, the coefficient of the x term, by 2 to get -\frac{27}{10}. Then add the square of -\frac{27}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{27}{5}x+\frac{729}{100}=\frac{18}{5}+\frac{729}{100}
Square -\frac{27}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{27}{5}x+\frac{729}{100}=\frac{1089}{100}
Add \frac{18}{5} to \frac{729}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{10}\right)^{2}=\frac{1089}{100}
Factor x^{2}-\frac{27}{5}x+\frac{729}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{10}\right)^{2}}=\sqrt{\frac{1089}{100}}
Take the square root of both sides of the equation.
x-\frac{27}{10}=\frac{33}{10} x-\frac{27}{10}=-\frac{33}{10}
Simplify.
x=6 x=-\frac{3}{5}
Add \frac{27}{10} to both sides of the equation.