Evaluate
\frac{131}{42}\approx 3.119047619
Factor
\frac{131}{2 \cdot 3 \cdot 7} = 3\frac{5}{42} = 3.119047619047619
Share
Copied to clipboard
\frac{70}{21}+\frac{6}{21}-\frac{1}{2}
Least common multiple of 3 and 7 is 21. Convert \frac{10}{3} and \frac{2}{7} to fractions with denominator 21.
\frac{70+6}{21}-\frac{1}{2}
Since \frac{70}{21} and \frac{6}{21} have the same denominator, add them by adding their numerators.
\frac{76}{21}-\frac{1}{2}
Add 70 and 6 to get 76.
\frac{152}{42}-\frac{21}{42}
Least common multiple of 21 and 2 is 42. Convert \frac{76}{21} and \frac{1}{2} to fractions with denominator 42.
\frac{152-21}{42}
Since \frac{152}{42} and \frac{21}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{131}{42}
Subtract 21 from 152 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}