Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10}{3}x^{2}-\frac{28}{3}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{28}{3}\right)±\sqrt{\left(-\frac{28}{3}\right)^{2}-4\times \frac{10}{3}\times 2}}{2\times \frac{10}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{3} for a, -\frac{28}{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{28}{3}\right)±\sqrt{\frac{784}{9}-4\times \frac{10}{3}\times 2}}{2\times \frac{10}{3}}
Square -\frac{28}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{28}{3}\right)±\sqrt{\frac{784}{9}-\frac{40}{3}\times 2}}{2\times \frac{10}{3}}
Multiply -4 times \frac{10}{3}.
x=\frac{-\left(-\frac{28}{3}\right)±\sqrt{\frac{784}{9}-\frac{80}{3}}}{2\times \frac{10}{3}}
Multiply -\frac{40}{3} times 2.
x=\frac{-\left(-\frac{28}{3}\right)±\sqrt{\frac{544}{9}}}{2\times \frac{10}{3}}
Add \frac{784}{9} to -\frac{80}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{28}{3}\right)±\frac{4\sqrt{34}}{3}}{2\times \frac{10}{3}}
Take the square root of \frac{544}{9}.
x=\frac{\frac{28}{3}±\frac{4\sqrt{34}}{3}}{2\times \frac{10}{3}}
The opposite of -\frac{28}{3} is \frac{28}{3}.
x=\frac{\frac{28}{3}±\frac{4\sqrt{34}}{3}}{\frac{20}{3}}
Multiply 2 times \frac{10}{3}.
x=\frac{4\sqrt{34}+28}{3\times \frac{20}{3}}
Now solve the equation x=\frac{\frac{28}{3}±\frac{4\sqrt{34}}{3}}{\frac{20}{3}} when ± is plus. Add \frac{28}{3} to \frac{4\sqrt{34}}{3}.
x=\frac{\sqrt{34}+7}{5}
Divide \frac{28+4\sqrt{34}}{3} by \frac{20}{3} by multiplying \frac{28+4\sqrt{34}}{3} by the reciprocal of \frac{20}{3}.
x=\frac{28-4\sqrt{34}}{3\times \frac{20}{3}}
Now solve the equation x=\frac{\frac{28}{3}±\frac{4\sqrt{34}}{3}}{\frac{20}{3}} when ± is minus. Subtract \frac{4\sqrt{34}}{3} from \frac{28}{3}.
x=\frac{7-\sqrt{34}}{5}
Divide \frac{28-4\sqrt{34}}{3} by \frac{20}{3} by multiplying \frac{28-4\sqrt{34}}{3} by the reciprocal of \frac{20}{3}.
x=\frac{\sqrt{34}+7}{5} x=\frac{7-\sqrt{34}}{5}
The equation is now solved.
\frac{10}{3}x^{2}-\frac{28}{3}x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10}{3}x^{2}-\frac{28}{3}x+2-2=-2
Subtract 2 from both sides of the equation.
\frac{10}{3}x^{2}-\frac{28}{3}x=-2
Subtracting 2 from itself leaves 0.
\frac{\frac{10}{3}x^{2}-\frac{28}{3}x}{\frac{10}{3}}=-\frac{2}{\frac{10}{3}}
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{28}{3}}{\frac{10}{3}}\right)x=-\frac{2}{\frac{10}{3}}
Dividing by \frac{10}{3} undoes the multiplication by \frac{10}{3}.
x^{2}-\frac{14}{5}x=-\frac{2}{\frac{10}{3}}
Divide -\frac{28}{3} by \frac{10}{3} by multiplying -\frac{28}{3} by the reciprocal of \frac{10}{3}.
x^{2}-\frac{14}{5}x=-\frac{3}{5}
Divide -2 by \frac{10}{3} by multiplying -2 by the reciprocal of \frac{10}{3}.
x^{2}-\frac{14}{5}x+\left(-\frac{7}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{7}{5}\right)^{2}
Divide -\frac{14}{5}, the coefficient of the x term, by 2 to get -\frac{7}{5}. Then add the square of -\frac{7}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{5}x+\frac{49}{25}=-\frac{3}{5}+\frac{49}{25}
Square -\frac{7}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{5}x+\frac{49}{25}=\frac{34}{25}
Add -\frac{3}{5} to \frac{49}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{5}\right)^{2}=\frac{34}{25}
Factor x^{2}-\frac{14}{5}x+\frac{49}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{5}\right)^{2}}=\sqrt{\frac{34}{25}}
Take the square root of both sides of the equation.
x-\frac{7}{5}=\frac{\sqrt{34}}{5} x-\frac{7}{5}=-\frac{\sqrt{34}}{5}
Simplify.
x=\frac{\sqrt{34}+7}{5} x=\frac{7-\sqrt{34}}{5}
Add \frac{7}{5} to both sides of the equation.