Evaluate
\frac{3344x}{173272745}
Differentiate w.r.t. x
\frac{3344}{173272745} = 1.9299053639393777 \times 10^{-5}
Graph
Share
Copied to clipboard
\frac{160}{28115}\times \frac{x\times 1.045}{308.15}
Expand \frac{1.6}{281.15} by multiplying both numerator and the denominator by 100.
\frac{32}{5623}\times \frac{x\times 1.045}{308.15}
Reduce the fraction \frac{160}{28115} to lowest terms by extracting and canceling out 5.
\frac{32}{5623}x\times \frac{209}{61630}
Divide x\times 1.045 by 308.15 to get x\times \frac{209}{61630}.
\frac{32\times 209}{5623\times 61630}x
Multiply \frac{32}{5623} times \frac{209}{61630} by multiplying numerator times numerator and denominator times denominator.
\frac{6688}{346545490}x
Do the multiplications in the fraction \frac{32\times 209}{5623\times 61630}.
\frac{3344}{173272745}x
Reduce the fraction \frac{6688}{346545490} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{160}{28115}\times \frac{x\times 1.045}{308.15})
Expand \frac{1.6}{281.15} by multiplying both numerator and the denominator by 100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{32}{5623}\times \frac{x\times 1.045}{308.15})
Reduce the fraction \frac{160}{28115} to lowest terms by extracting and canceling out 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{32}{5623}x\times \frac{209}{61630})
Divide x\times 1.045 by 308.15 to get x\times \frac{209}{61630}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{32\times 209}{5623\times 61630}x)
Multiply \frac{32}{5623} times \frac{209}{61630} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6688}{346545490}x)
Do the multiplications in the fraction \frac{32\times 209}{5623\times 61630}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3344}{173272745}x)
Reduce the fraction \frac{6688}{346545490} to lowest terms by extracting and canceling out 2.
\frac{3344}{173272745}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{3344}{173272745}x^{0}
Subtract 1 from 1.
\frac{3344}{173272745}\times 1
For any term t except 0, t^{0}=1.
\frac{3344}{173272745}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}