Solve for y
y = \frac{\sqrt{5907} + 117}{4} \approx 48.464252523
y = \frac{117 - \sqrt{5907}}{4} \approx 10.035747477
Graph
Share
Copied to clipboard
1.5-36y+4y\left(y-36\right)=54\left(y-36\right)
Variable y cannot be equal to 36 since division by zero is not defined. Multiply both sides of the equation by y-36.
1.5-36y+4y^{2}-144y=54\left(y-36\right)
Use the distributive property to multiply 4y by y-36.
1.5-180y+4y^{2}=54\left(y-36\right)
Combine -36y and -144y to get -180y.
1.5-180y+4y^{2}=54y-1944
Use the distributive property to multiply 54 by y-36.
1.5-180y+4y^{2}-54y=-1944
Subtract 54y from both sides.
1.5-234y+4y^{2}=-1944
Combine -180y and -54y to get -234y.
1.5-234y+4y^{2}+1944=0
Add 1944 to both sides.
1945.5-234y+4y^{2}=0
Add 1.5 and 1944 to get 1945.5.
4y^{2}-234y+1945.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-234\right)±\sqrt{\left(-234\right)^{2}-4\times 4\times 1945.5}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -234 for b, and 1945.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-234\right)±\sqrt{54756-4\times 4\times 1945.5}}{2\times 4}
Square -234.
y=\frac{-\left(-234\right)±\sqrt{54756-16\times 1945.5}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-234\right)±\sqrt{54756-31128}}{2\times 4}
Multiply -16 times 1945.5.
y=\frac{-\left(-234\right)±\sqrt{23628}}{2\times 4}
Add 54756 to -31128.
y=\frac{-\left(-234\right)±2\sqrt{5907}}{2\times 4}
Take the square root of 23628.
y=\frac{234±2\sqrt{5907}}{2\times 4}
The opposite of -234 is 234.
y=\frac{234±2\sqrt{5907}}{8}
Multiply 2 times 4.
y=\frac{2\sqrt{5907}+234}{8}
Now solve the equation y=\frac{234±2\sqrt{5907}}{8} when ± is plus. Add 234 to 2\sqrt{5907}.
y=\frac{\sqrt{5907}+117}{4}
Divide 234+2\sqrt{5907} by 8.
y=\frac{234-2\sqrt{5907}}{8}
Now solve the equation y=\frac{234±2\sqrt{5907}}{8} when ± is minus. Subtract 2\sqrt{5907} from 234.
y=\frac{117-\sqrt{5907}}{4}
Divide 234-2\sqrt{5907} by 8.
y=\frac{\sqrt{5907}+117}{4} y=\frac{117-\sqrt{5907}}{4}
The equation is now solved.
1.5-36y+4y\left(y-36\right)=54\left(y-36\right)
Variable y cannot be equal to 36 since division by zero is not defined. Multiply both sides of the equation by y-36.
1.5-36y+4y^{2}-144y=54\left(y-36\right)
Use the distributive property to multiply 4y by y-36.
1.5-180y+4y^{2}=54\left(y-36\right)
Combine -36y and -144y to get -180y.
1.5-180y+4y^{2}=54y-1944
Use the distributive property to multiply 54 by y-36.
1.5-180y+4y^{2}-54y=-1944
Subtract 54y from both sides.
1.5-234y+4y^{2}=-1944
Combine -180y and -54y to get -234y.
-234y+4y^{2}=-1944-1.5
Subtract 1.5 from both sides.
-234y+4y^{2}=-1945.5
Subtract 1.5 from -1944 to get -1945.5.
4y^{2}-234y=-1945.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4y^{2}-234y}{4}=-\frac{1945.5}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{234}{4}\right)y=-\frac{1945.5}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-\frac{117}{2}y=-\frac{1945.5}{4}
Reduce the fraction \frac{-234}{4} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{117}{2}y=-486.375
Divide -1945.5 by 4.
y^{2}-\frac{117}{2}y+\left(-\frac{117}{4}\right)^{2}=-486.375+\left(-\frac{117}{4}\right)^{2}
Divide -\frac{117}{2}, the coefficient of the x term, by 2 to get -\frac{117}{4}. Then add the square of -\frac{117}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{117}{2}y+\frac{13689}{16}=-486.375+\frac{13689}{16}
Square -\frac{117}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{117}{2}y+\frac{13689}{16}=\frac{5907}{16}
Add -486.375 to \frac{13689}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{117}{4}\right)^{2}=\frac{5907}{16}
Factor y^{2}-\frac{117}{2}y+\frac{13689}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{117}{4}\right)^{2}}=\sqrt{\frac{5907}{16}}
Take the square root of both sides of the equation.
y-\frac{117}{4}=\frac{\sqrt{5907}}{4} y-\frac{117}{4}=-\frac{\sqrt{5907}}{4}
Simplify.
y=\frac{\sqrt{5907}+117}{4} y=\frac{117-\sqrt{5907}}{4}
Add \frac{117}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}